BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

168 related articles for article (PubMed ID: 28927605)

  • 1. Enhanced flame-retardant properties of cellulose fibers by incorporation of acid-resistant magnesium-oxide microcapsules.
    Li X; Zhang K; Shi R; Ma X; Tan L; Ji Q; Xia Y
    Carbohydr Polym; 2017 Nov; 176():246-256. PubMed ID: 28927605
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Influence of Na
    Shi R; Tan L; Zong L; Ji Q; Li X; Zhang K; Cheng L; Xia Y
    Carbohydr Polym; 2017 Feb; 157():1594-1603. PubMed ID: 27987873
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Synthesis of a Novel Phosphorus-Containing Flame Retardant Curing Agent and Its Application in Epoxy Resins.
    Zhang H; Xu M; Li B
    J Nanosci Nanotechnol; 2016 Mar; 16(3):2811-21. PubMed ID: 27455714
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect of cellulose acetate butyrate microencapsulated ammonium polyphosphate on the flame retardancy, mechanical, electrical, and thermal properties of intumescent flame-retardant ethylene-vinyl acetate copolymer/microencapsulated ammonium polyphosphate/polyamide-6 blends.
    Wang B; Tang Q; Hong N; Song L; Wang L; Shi Y; Hu Y
    ACS Appl Mater Interfaces; 2011 Sep; 3(9):3754-61. PubMed ID: 21859130
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Improve the flame retardancy of cellulose fibers by grafting zinc ion.
    Zhang K; Zong L; Tan Y; Ji Q; Yun W; Shi R; Xia Y
    Carbohydr Polym; 2016 Jan; 136():121-7. PubMed ID: 26572337
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Preparation of Ion-Exchanged TEMPO-Oxidized Celluloses as Flame Retardant Products.
    Geng C; Zhao Z; Xue Z; Xu P; Xia Y
    Molecules; 2019 May; 24(10):. PubMed ID: 31117205
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A Polycarbonate/Magnesium Oxide Nanocomposite with High Flame Retardancy.
    Dong Q; Gao C; Ding Y; Wang F; Wen B; Zhang S; Wang T; Yang M
    J Appl Polym Sci; 2012 Jan; 123(2):1085-1093. PubMed ID: 24696526
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Enhanced Flame Retardancy in Ethylene-Vinyl Acetate Copolymer/Magnesium Hydroxide/Polycarbosilane Blends.
    Zhang T; Wang C; Wang Y; Qian L; Han Z
    Polymers (Basel); 2021 Dec; 14(1):. PubMed ID: 35012058
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effects of a Reactive Phosphorus-Sulfur Containing Flame-Retardant Monomer on the Flame Retardancy and Thermal and Mechanical Properties of Unsaturated Polyester Resin.
    Dai K; Deng Z; Liu G; Wu Y; Xu W; Hu Y
    Polymers (Basel); 2020 Jun; 12(7):. PubMed ID: 32605118
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Flame Retardancy and Thermal Behavior of an Unsaturated Polyester Modified with Kaolinite-Urea Intercalation Complexes.
    Yue L; Li J; Zhou X; Sun Y; Gao M; Zhu T; Zhang X; Feng T; Shi Z; Liu Y
    Molecules; 2020 Oct; 25(20):. PubMed ID: 33076390
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Wet Spinning of Flame-Retardant Cellulosic Fibers Supported by Interfacial Complexation of Cellulose Nanofibrils with Silica Nanoparticles.
    Nechyporchuk O; Bordes R; Köhnke T
    ACS Appl Mater Interfaces; 2017 Nov; 9(44):39069-39077. PubMed ID: 29028306
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Synergetic enhancement of mechanical and fire-resistance performance of waterborne polyurethane by introducing two kinds of phosphorus-nitrogen flame retardant.
    Wang S; Du X; Jiang Y; Xu J; Zhou M; Wang H; Cheng X; Du Z
    J Colloid Interface Sci; 2019 Mar; 537():197-205. PubMed ID: 30439616
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Phosphorylated Cellulose Nanofibrils: A Renewable Nanomaterial for the Preparation of Intrinsically Flame-Retardant Materials.
    Ghanadpour M; Carosio F; Larsson PT; Wågberg L
    Biomacromolecules; 2015 Oct; 16(10):3399-410. PubMed ID: 26402379
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Novel Intumescent Flame Retardant Masterbatch Prepared through Different Processes and Its Application in EPDM/PP Thermoplastic Elastomer: Thermal Stability, Flame Retardancy, and Mechanical Properties.
    He W; Zhou Y; Chen X; Guo J; Zhou D; Chen S; Wang M; Li L
    Polymers (Basel); 2018 Dec; 11(1):. PubMed ID: 30960034
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Structure and properties of halogen-free flame retardant and phosphorus-containing aromatic poly(1,3,4-oxadiazole)s fiber.
    Liu P; Dong L; Wu L; Zeng L; Xu J
    RSC Adv; 2019 Mar; 9(13):7147-7155. PubMed ID: 35519946
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Flame retardancy of polyaniline-deposited paper composites prepared via in situ polymerization.
    Wu X; Qian X; An X
    Carbohydr Polym; 2013 Jan; 92(1):435-40. PubMed ID: 23218317
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Basalt Fiber Modified Ethylene Vinyl Acetate/Magnesium Hydroxide Composites with Balanced Flame Retardancy and Improved Mechanical Properties.
    Yao D; Yin G; Bi Q; Yin X; Wang N; Wang DY
    Polymers (Basel); 2020 Sep; 12(9):. PubMed ID: 32947867
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Flame retardant finishing of cotton fabric based on synergistic compounds containing boron and nitrogen.
    Xie K; Gao A; Zhang Y
    Carbohydr Polym; 2013 Oct; 98(1):706-10. PubMed ID: 23987402
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Flammability of Cellulose-Based Fibers and the Effect of Structure of Phosphorus Compounds on Their Flame Retardancy.
    Salmeia KA; Jovic M; Ragaisiene A; Rukuiziene Z; Milasius R; Mikucioniene D; Gaan S
    Polymers (Basel); 2016 Aug; 8(8):. PubMed ID: 30974570
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Polybenzoxazine Resins with Cellulose Phosphide: Preparation, Flame Retardancy and Mechanisms.
    Li H; Sun Z; Zhao C; Li Y; Xiang D; Wu Y; Wei J; Que Y
    Polymers (Basel); 2021 Dec; 13(24):. PubMed ID: 34960838
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.