These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

87 related articles for article (PubMed ID: 28927642)

  • 1. Iterative approach for 3D reconstruction of the femur from un-calibrated 2D radiographic images.
    Youn K; Park MS; Lee J
    Med Eng Phys; 2017 Dec; 50():89-95. PubMed ID: 28927642
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Fully automatic reconstruction of personalized 3D volumes of the proximal femur from 2D X-ray images.
    Yu W; Chu C; Tannast M; Zheng G
    Int J Comput Assist Radiol Surg; 2016 Sep; 11(9):1673-85. PubMed ID: 27038965
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A 2D/3D correspondence building method for reconstruction of a patient-specific 3D bone surface model using point distribution models and calibrated X-ray images.
    Zheng G; Gollmer S; Schumann S; Dong X; Feilkas T; González Ballester MA
    Med Image Anal; 2009 Dec; 13(6):883-99. PubMed ID: 19162529
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Three-dimensional reconstruction of the scoliotic spine and pelvis from uncalibrated biplanar x-ray images.
    Kadoury S; Cheriet F; Dansereau J; Labelle H
    J Spinal Disord Tech; 2007 Apr; 20(2):160-7. PubMed ID: 17414987
    [TBL] [Abstract][Full Text] [Related]  

  • 5. 2D/3D reconstruction of the distal femur using statistical shape models addressing personalized surgical instruments in knee arthroplasty: A feasibility analysis.
    Cerveri P; Sacco C; Olgiati G; Manzotti A; Baroni G
    Int J Med Robot; 2017 Dec; 13(4):. PubMed ID: 28387436
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Diagnostic radiograph based 3D bone reconstruction framework: application to the femur.
    Gamage P; Xie SQ; Delmas P; Xu WL
    Comput Med Imaging Graph; 2011 Sep; 35(6):427-37. PubMed ID: 21621977
    [TBL] [Abstract][Full Text] [Related]  

  • 7. 2D-3D shape reconstruction of the distal femur from stereo X-ray imaging using statistical shape models.
    Baka N; Kaptein BL; de Bruijne M; van Walsum T; Giphart JE; Niessen WJ; Lelieveldt BP
    Med Image Anal; 2011 Dec; 15(6):840-50. PubMed ID: 21600836
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Three-dimensional reconstruction of the lower limb from biplanar calibrated radiographs.
    Quijano S; Serrurier A; Aubert B; Laporte S; Thoreux P; Skalli W
    Med Eng Phys; 2013 Dec; 35(12):1703-12. PubMed ID: 23938086
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Development and Validation of a Mobile Application for Measuring Femoral Anteversion in Patients With Cerebral Palsy.
    Sung KH; Youn K; Chung CY; Kitta MI; Kumara HC; Min JJ; Lee J; Park MS
    J Pediatr Orthop; 2020 Jul; 40(6):e516-e521. PubMed ID: 32501925
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Automatic extraction of proximal femur contours from calibrated X-ray images using 3D statistical models: an in vitro study.
    Dong X; Zheng G
    Int J Med Robot; 2009 Jun; 5(2):213-22. PubMed ID: 19343704
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Statistical shape model-based reconstruction of a scaled, patient-specific surface model of the pelvis from a single standard AP x-ray radiograph.
    Zheng G
    Med Phys; 2010 Apr; 37(4):1424-39. PubMed ID: 20443464
    [TBL] [Abstract][Full Text] [Related]  

  • 12. An integrated system for 3D hip joint reconstruction from 2D X-rays: a preliminary validation study.
    Schumann S; Liu L; Tannast M; Bergmann M; Nolte LP; Zheng G
    Ann Biomed Eng; 2013 Oct; 41(10):2077-87. PubMed ID: 23670657
    [TBL] [Abstract][Full Text] [Related]  

  • 13. 3D reconstruction of a patient-specific surface model of the proximal femur from calibrated x-ray radiographs: a validation study.
    Zheng G; Schumann S
    Med Phys; 2009 Apr; 36(4):1155-66. PubMed ID: 19472621
    [TBL] [Abstract][Full Text] [Related]  

  • 14. 3D shape reconstruction of the femur from planar X-ray images using statistical shape and appearance models.
    Nolte D; Xie S; Bull AMJ
    Biomed Eng Online; 2023 Mar; 22(1):30. PubMed ID: 36964560
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Generation of 3D shape, density, cortical thickness and finite element mesh of proximal femur from a DXA image.
    Väänänen SP; Grassi L; Flivik G; Jurvelin JS; Isaksson H
    Med Image Anal; 2015 Aug; 24(1):125-134. PubMed ID: 26148575
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Personalized X-ray reconstruction of the proximal femur via intensity-based non-rigid 2D-3D registration.
    Zheng G
    Med Image Comput Comput Assist Interv; 2011; 14(Pt 2):598-606. PubMed ID: 21995078
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A method to reconstruct patient-specific proximal femur surface models from planar pre-operative radiographs.
    Galibarov PE; Prendergast PJ; Lennon AB
    Med Eng Phys; 2010 Dec; 32(10):1180-8. PubMed ID: 20933453
    [TBL] [Abstract][Full Text] [Related]  

  • 18. SIFT algorithm-based 3D pose estimation of femur.
    Zhang X; Zhu Y; Li C; Zhao J; Li G
    Biomed Mater Eng; 2014; 24(6):2847-55. PubMed ID: 25226990
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A biplanar reconstruction method based on 2D and 3D contours: application to the distal femur.
    Laporte S; Skalli W; de Guise JA; Lavaste F; Mitton D
    Comput Methods Biomech Biomed Engin; 2003 Feb; 6(1):1-6. PubMed ID: 12623432
    [TBL] [Abstract][Full Text] [Related]  

  • 20. 3D femur model reconstruction from biplane X-ray images: a novel method based on Laplacian surface deformation.
    Karade V; Ravi B
    Int J Comput Assist Radiol Surg; 2015 Apr; 10(4):473-85. PubMed ID: 25037878
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.