These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
4. Surface modification of copolymerized films from three-armed biodegradable macromers - An analytical platform for modified tissue engineering scaffolds. Müller BM; Loth R; Hoffmeister PG; Zühl F; Kalbitzer L; Hacker MC; Schulz-Siegmund M Acta Biomater; 2017 Mar; 51():148-160. PubMed ID: 28069495 [TBL] [Abstract][Full Text] [Related]
5. Effect of inorganic/organic ratio and chemical coupling on the performance of porous silica/chitosan hybrid scaffolds. Wang D; Liu W; Feng Q; Dong C; Liu Q; Duan L; Huang J; Zhu W; Li Z; Xiong J; Liang Y; Chen J; Sun R; Bian L; Wang D Mater Sci Eng C Mater Biol Appl; 2017 Jan; 70(Pt 2):969-975. PubMed ID: 27772728 [TBL] [Abstract][Full Text] [Related]
6. Biodegradable inorganic-organic hybrids of methacrylate star polymers for bone regeneration. Chung JJ; Fujita Y; Li S; Stevens MM; Kasuga T; Georgiou TK; Jones JR Acta Biomater; 2017 May; 54():411-418. PubMed ID: 28285078 [TBL] [Abstract][Full Text] [Related]
7. Fabrication of novel bioactive hydroxyapatite-chitosan-silica hybrid scaffolds: Combined the sol-gel method with 3D plotting technique. Dong Y; Liang J; Cui Y; Xu S; Zhao N Carbohydr Polym; 2018 Oct; 197():183-193. PubMed ID: 30007604 [TBL] [Abstract][Full Text] [Related]
8. Highly degradable porous melt-derived bioactive glass foam scaffolds for bone regeneration. Nommeots-Nomm A; Labbaf S; Devlin A; Todd N; Geng H; Solanki AK; Tang HM; Perdika P; Pinna A; Ejeian F; Tsigkou O; Lee PD; Esfahani MHN; Mitchell CA; Jones JR Acta Biomater; 2017 Jul; 57():449-461. PubMed ID: 28457960 [TBL] [Abstract][Full Text] [Related]
9. Synthesis and electrospinning of ε-polycaprolactone-bioactive glass hybrid biomaterials via a sol-gel process. Allo BA; Rizkalla AS; Mequanint K Langmuir; 2010 Dec; 26(23):18340-8. PubMed ID: 21050002 [TBL] [Abstract][Full Text] [Related]
10. Robocasting of Cu Ben-Arfa BAE; Neto S; Miranda Salvado IM; Pullar RC; Ferreira JMF Acta Biomater; 2019 Mar; 87():265-272. PubMed ID: 30690209 [TBL] [Abstract][Full Text] [Related]
11. Characterizing the hierarchical structures of bioactive sol-gel silicate glass and hybrid scaffolds for bone regeneration. Martin RA; Yue S; Hanna JV; Lee PD; Newport RJ; Smith ME; Jones JR Philos Trans A Math Phys Eng Sci; 2012 Mar; 370(1963):1422-43. PubMed ID: 22349249 [TBL] [Abstract][Full Text] [Related]
12. Effect of bioactive glass particles on osteogenic differentiation of adipose-derived mesenchymal stem cells seeded on lactide and caprolactone based scaffolds. Larrañaga A; Alonso-Varona A; Palomares T; Rubio-Azpeitia E; Aldazabal P; Martin FJ; Sarasua JR J Biomed Mater Res A; 2015 Dec; 103(12):3815-24. PubMed ID: 26074489 [TBL] [Abstract][Full Text] [Related]
13. Osteogenic differentiation of umbilical cord and adipose derived stem cells onto highly porous 45S5 Bioglass®-based scaffolds. Detsch R; Alles S; Hum J; Westenberger P; Sieker F; Heusinger D; Kasper C; Boccaccini AR J Biomed Mater Res A; 2015 Mar; 103(3):1029-37. PubMed ID: 24853477 [TBL] [Abstract][Full Text] [Related]
14. Solvent-free preparation of porous poly(l-lactide) microcarriers for cell culture. Kuterbekov M; Machillot P; Lhuissier P; Picart C; Jonas AM; Glinel K Acta Biomater; 2018 Jul; 75():300-311. PubMed ID: 29883812 [TBL] [Abstract][Full Text] [Related]
15. Sustained Calcium(II)-Release to Impart Bioactivity in Hybrid Glass Scaffolds for Bone Tissue Engineering. Kuzmenka D; Sewohl C; König A; Flath T; Hahnel S; Schulze FP; Hacker MC; Schulz-Siegmund M Pharmaceutics; 2020 Dec; 12(12):. PubMed ID: 33302527 [TBL] [Abstract][Full Text] [Related]
16. Robotic deposition and in vitro characterization of 3D gelatin-bioactive glass hybrid scaffolds for biomedical applications. Gao C; Rahaman MN; Gao Q; Teramoto A; Abe K J Biomed Mater Res A; 2013 Jul; 101(7):2027-37. PubMed ID: 23255226 [TBL] [Abstract][Full Text] [Related]