These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
346 related articles for article (PubMed ID: 28927930)
21. Hierarchical mesoporous bioactive glass/alginate composite scaffolds fabricated by three-dimensional plotting for bone tissue engineering. Luo Y; Wu C; Lode A; Gelinsky M Biofabrication; 2013 Mar; 5(1):015005. PubMed ID: 23228963 [TBL] [Abstract][Full Text] [Related]
22. Porous Scaffolds for Regeneration of Cartilage, Bone and Osteochondral Tissue. Chen G; Kawazoe N Adv Exp Med Biol; 2018; 1058():171-191. PubMed ID: 29691822 [TBL] [Abstract][Full Text] [Related]
23. Electrospun Polyhydroxybutyrate/Poly(ε-caprolactone)/58S Sol-Gel Bioactive Glass Hybrid Scaffolds with Highly Improved Osteogenic Potential for Bone Tissue Engineering. Ding Y; Li W; Müller T; Schubert DW; Boccaccini AR; Yao Q; Roether JA ACS Appl Mater Interfaces; 2016 Jul; 8(27):17098-108. PubMed ID: 27295496 [TBL] [Abstract][Full Text] [Related]
24. Synergistic effect between bioactive glass foam and a perfusion bioreactor on osteogenic differentiation of human adipose stem cells. Silva AR; Paula AC; Martins TM; Goes AM; Pereria MM J Biomed Mater Res A; 2014 Mar; 102(3):818-27. PubMed ID: 23625853 [TBL] [Abstract][Full Text] [Related]
25. Fabrication and characterization of sol-gel derived 45S5 Bioglass®-ceramic scaffolds. Chen QZ; Thouas GA Acta Biomater; 2011 Oct; 7(10):3616-26. PubMed ID: 21689791 [TBL] [Abstract][Full Text] [Related]
26. Silicate, borosilicate, and borate bioactive glass scaffolds with controllable degradation rate for bone tissue engineering applications. I. Preparation and in vitro degradation. Fu Q; Rahaman MN; Fu H; Liu X J Biomed Mater Res A; 2010 Oct; 95(1):164-71. PubMed ID: 20544804 [TBL] [Abstract][Full Text] [Related]
29. Osteoinductive fibrous scaffolds of biopolymer/mesoporous bioactive glass nanocarriers with excellent bioactivity and long-term delivery of osteogenic drug. El-Fiqi A; Kim JH; Kim HW ACS Appl Mater Interfaces; 2015 Jan; 7(2):1140-52. PubMed ID: 25531645 [TBL] [Abstract][Full Text] [Related]
30. Hydroxyapatite formation on sol-gel derived poly(ε-caprolactone)/bioactive glass hybrid biomaterials. Allo BA; Rizkalla AS; Mequanint K ACS Appl Mater Interfaces; 2012 Jun; 4(6):3148-56. PubMed ID: 22625179 [TBL] [Abstract][Full Text] [Related]
31. Strut size and surface area effects on long-term in vivo degradation in computer designed poly(L-lactic acid) three-dimensional porous scaffolds. Saito E; Liu Y; Migneco F; Hollister SJ Acta Biomater; 2012 Jul; 8(7):2568-77. PubMed ID: 22446030 [TBL] [Abstract][Full Text] [Related]
32. Multifunctional polyethylene imine hybrids decorated by silica bioactive glass with enhanced mechanical properties, antibacterial, and osteogenesis for bone repair. Aghayan M; Alizadeh P; Keshavarz M Mater Sci Eng C Mater Biol Appl; 2021 Dec; 131():112534. PubMed ID: 34857311 [TBL] [Abstract][Full Text] [Related]
33. Chitosan-silica hybrid porous membranes. Pandis C; Madeira S; Matos J; Kyritsis A; Mano JF; Ribelles JL Mater Sci Eng C Mater Biol Appl; 2014 Sep; 42():553-61. PubMed ID: 25063153 [TBL] [Abstract][Full Text] [Related]
34. Additive manufacturing of photo-crosslinked gelatin scaffolds for adipose tissue engineering. Tytgat L; Van Damme L; Van Hoorick J; Declercq H; Thienpont H; Ottevaere H; Blondeel P; Dubruel P; Van Vlierberghe S Acta Biomater; 2019 Aug; 94():340-350. PubMed ID: 31136829 [TBL] [Abstract][Full Text] [Related]
35. Incorporation of sol-gel bioactive glass into PLGA improves mechanical properties and bioactivity of composite scaffolds and results in their osteoinductive properties. Filipowska J; Pawlik J; Cholewa-Kowalska K; Tylko G; Pamula E; Niedzwiedzki L; Szuta M; Laczka M; Osyczka AM Biomed Mater; 2014 Oct; 9(6):065001. PubMed ID: 25329328 [TBL] [Abstract][Full Text] [Related]
36. Bioactive glass/polymer composite scaffolds mimicking bone tissue. Gentile P; Mattioli-Belmonte M; Chiono V; Ferretti C; Baino F; Tonda-Turo C; Vitale-Brovarone C; Pashkuleva I; Reis RL; Ciardelli G J Biomed Mater Res A; 2012 Oct; 100(10):2654-67. PubMed ID: 22615261 [TBL] [Abstract][Full Text] [Related]
37. Novel Organic-Inorganic Nanocomposite Hybrids Based on Bioactive Glass Nanoparticles and Their Enhanced Osteoinductive Properties. Cohn N; Bradtmüller H; Zanotto E; von Marttens A; Covarrubias C Biomolecules; 2024 Apr; 14(4):. PubMed ID: 38672498 [TBL] [Abstract][Full Text] [Related]
38. In vitro chondrocyte behavior on porous biodegradable poly(e-caprolactone)/polyglycolic acid scaffolds for articular chondrocyte adhesion and proliferation. Jonnalagadda JB; Rivero IV; Dertien JS J Biomater Sci Polym Ed; 2015; 26(7):401-19. PubMed ID: 25671317 [TBL] [Abstract][Full Text] [Related]
39. Review of bioactive glass: from Hench to hybrids. Jones JR Acta Biomater; 2013 Jan; 9(1):4457-86. PubMed ID: 22922331 [TBL] [Abstract][Full Text] [Related]
40. Surface modification of 3D-printed porous scaffolds via mussel-inspired polydopamine and effective immobilization of rhBMP-2 to promote osteogenic differentiation for bone tissue engineering. Lee SJ; Lee D; Yoon TR; Kim HK; Jo HH; Park JS; Lee JH; Kim WD; Kwon IK; Park SA Acta Biomater; 2016 Aug; 40():182-191. PubMed ID: 26868173 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]