These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

185 related articles for article (PubMed ID: 28928396)

  • 1. Balance between hydration enthalpy and entropy is important for ice binding surfaces in Antifreeze Proteins.
    Schauperl M; Podewitz M; Ortner TS; Waibl F; Thoeny A; Loerting T; Liedl KR
    Sci Rep; 2017 Sep; 7(1):11901. PubMed ID: 28928396
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Hydration Shell of Antifreeze Proteins: Unveiling the Role of Non-Ice-Binding Surfaces.
    Zanetti-Polzi L; Biswas AD; Del Galdo S; Barone V; Daidone I
    J Phys Chem B; 2019 Aug; 123(30):6474-6480. PubMed ID: 31280567
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Enthalpic and Entropic Contributions to Hydrophobicity.
    Schauperl M; Podewitz M; Waldner BJ; Liedl KR
    J Chem Theory Comput; 2016 Sep; 12(9):4600-10. PubMed ID: 27442443
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Deciphering the Role of the Non-ice-binding Surface in the Antifreeze Activity of Hyperactive Antifreeze Proteins.
    Pal P; Chakraborty S; Jana B
    J Phys Chem B; 2020 Jun; 124(23):4686-4696. PubMed ID: 32425044
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effect of glycosylation on hydration behavior at the ice-binding surface of the Ocean Pout type III antifreeze protein: a molecular dynamics simulation.
    Halder S; Mukhopadhyay C
    J Biomol Struct Dyn; 2017 Dec; 35(16):3591-3604. PubMed ID: 27882844
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Formation of ice-like water structure on the surface of an antifreeze protein.
    Smolin N; Daggett V
    J Phys Chem B; 2008 May; 112(19):6193-202. PubMed ID: 18336017
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Preordering of water is not needed for ice recognition by hyperactive antifreeze proteins.
    Hudait A; Moberg DR; Qiu Y; Odendahl N; Paesani F; Molinero V
    Proc Natl Acad Sci U S A; 2018 Aug; 115(33):8266-8271. PubMed ID: 29987018
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Unusual structural properties of water within the hydration shell of hyperactive antifreeze protein.
    Kuffel A; Czapiewski D; Zielkiewicz J
    J Chem Phys; 2014 Aug; 141(5):055103. PubMed ID: 25106616
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Ordered hydration layer mediated ice adsorption of a globular antifreeze protein: mechanistic insight.
    Chakraborty S; Jana B
    Phys Chem Chem Phys; 2019 Sep; 21(35):19298-19310. PubMed ID: 31451813
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Molecular structure of a hyperactive antifreeze protein adsorbed to ice.
    Meister K; Moll CJ; Chakraborty S; Jana B; DeVries AL; Ramløv H; Bakker HJ
    J Chem Phys; 2019 Apr; 150(13):131101. PubMed ID: 30954062
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Theoretical study of interaction of winter flounder antifreeze protein with ice.
    Jorov A; Zhorov BS; Yang DS
    Protein Sci; 2004 Jun; 13(6):1524-37. PubMed ID: 15152087
    [TBL] [Abstract][Full Text] [Related]  

  • 12. When are antifreeze proteins in solution essential for ice growth inhibition?
    Drori R; Davies PL; Braslavsky I
    Langmuir; 2015 Jun; 31(21):5805-11. PubMed ID: 25946514
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Structure and application of antifreeze proteins from Antarctic bacteria.
    Muñoz PA; Márquez SL; González-Nilo FD; Márquez-Miranda V; Blamey JM
    Microb Cell Fact; 2017 Aug; 16(1):138. PubMed ID: 28784139
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Reversible binding of the HPLC6 isoform of type I antifreeze proteins to ice surfaces and the antifreeze mechanism studied by multiple quantum filtering-spin exchange NMR experiment.
    Ba Y; Wongskhaluang J; Li J
    J Am Chem Soc; 2003 Jan; 125(2):330-1. PubMed ID: 12517134
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Dual function of the hydration layer around an antifreeze protein revealed by atomistic molecular dynamics simulations.
    Nutt DR; Smith JC
    J Am Chem Soc; 2008 Oct; 130(39):13066-73. PubMed ID: 18774821
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Refined solution structure of type III antifreeze protein: hydrophobic groups may be involved in the energetics of the protein-ice interaction.
    Sönnichsen FD; DeLuca CI; Davies PL; Sykes BD
    Structure; 1996 Nov; 4(11):1325-37. PubMed ID: 8939756
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mechanisms of antifreeze proteins investigated via the site-directed spin labeling technique.
    Flores A; Quon JC; Perez AF; Ba Y
    Eur Biophys J; 2018 Sep; 47(6):611-630. PubMed ID: 29487966
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Binding Pose Flip Explained via Enthalpic and Entropic Contributions.
    Schauperl M; Czodrowski P; Fuchs JE; Huber RG; Waldner BJ; Podewitz M; Kramer C; Liedl KR
    J Chem Inf Model; 2017 Feb; 57(2):345-354. PubMed ID: 28079371
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Spectroscopic Fingerprints of Cavity Formation and Solute Insertion as a Measure of Hydration Entropic Loss and Enthalpic Gain.
    Pezzotti S; Sebastiani F; van Dam EP; Ramos S; Conti Nibali V; Schwaab G; Havenith M
    Angew Chem Int Ed Engl; 2022 Jul; 61(29):e202203893. PubMed ID: 35500074
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Partitioning of fish and insect antifreeze proteins into ice suggests they bind with comparable affinity.
    Marshall CB; Tomczak MM; Gauthier SY; Kuiper MJ; Lankin C; Walker VK; Davies PL
    Biochemistry; 2004 Jan; 43(1):148-54. PubMed ID: 14705940
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.