BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

224 related articles for article (PubMed ID: 28928432)

  • 1. Two NAD-linked redox shuttles maintain the peroxisomal redox balance in Saccharomyces cerevisiae.
    Al-Saryi NA; Al-Hejjaj MY; van Roermund CWT; Hulmes GE; Ekal L; Payton C; Wanders RJA; Hettema EH
    Sci Rep; 2017 Sep; 7(1):11868. PubMed ID: 28928432
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Structure of glyoxysomal malate dehydrogenase (MDH3) from Saccharomyces cerevisiae.
    Moriyama S; Nishio K; Mizushima T
    Acta Crystallogr F Struct Biol Commun; 2018 Oct; 74(Pt 10):617-624. PubMed ID: 30279312
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The membrane of peroxisomes in Saccharomyces cerevisiae is impermeable to NAD(H) and acetyl-CoA under in vivo conditions.
    van Roermund CW; Elgersma Y; Singh N; Wanders RJ; Tabak HF
    EMBO J; 1995 Jul; 14(14):3480-6. PubMed ID: 7628449
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Involvement of the external mitochondrial NADH dehydrogenase Nde1 in glycerol metabolism by wild-type and engineered Saccharomyces cerevisiae strains.
    Aßkamp MR; Klein M; Nevoigt E
    FEMS Yeast Res; 2019 May; 19(3):. PubMed ID: 30915433
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The importance of the glycerol 3-phosphate shuttle during aerobic growth of Saccharomyces cerevisiae.
    Larsson C; Påhlman IL; Ansell R; Rigoulet M; Adler L; Gustafsson L
    Yeast; 1998 Mar; 14(4):347-57. PubMed ID: 9559543
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Distinct intracellular localization of Gpd1p and Gpd2p, the two yeast isoforms of NAD+-dependent glycerol-3-phosphate dehydrogenase, explains their different contributions to redox-driven glycerol production.
    Valadi A; Granath K; Gustafsson L; Adler L
    J Biol Chem; 2004 Sep; 279(38):39677-85. PubMed ID: 15210723
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cytosolic aspartate aminotransferase encoded by the AAT2 gene is targeted to the peroxisomes in oleate-grown Saccharomyces cerevisiae.
    Verleur N; Elgersma Y; Van Roermund CW; Tabak HF; Wanders RJ
    Eur J Biochem; 1997 Aug; 247(3):972-80. PubMed ID: 9288922
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Stress exposure results in increased peroxisomal levels of yeast Pnc1 and Gpd1, which are imported via a piggy-backing mechanism.
    Kumar Choudhry S; Singh R; Williams CP; van der Klei IJ
    Biochim Biophys Acta; 2016 Jan; 1863(1):148-56. PubMed ID: 26516056
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Overexpression of peroxisomal malate dehydrogenase MDH3 gene enhances cell death on H2O2 stress in the ald5 mutant of Saccharomyces cerevisiae.
    Kurita O
    Curr Microbiol; 2003 Sep; 47(3):192-7. PubMed ID: 14570268
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Stoichiometry and compartmentation of NADH metabolism in Saccharomyces cerevisiae.
    Bakker BM; Overkamp KM; van Maris AJ ; Kötter P; Luttik MA; van Dijken JP ; Pronk JT
    FEMS Microbiol Rev; 2001 Jan; 25(1):15-37. PubMed ID: 11152939
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Gpd1 and Gpd2 fine-tuning for sustainable reduction of glycerol formation in Saccharomyces cerevisiae.
    Hubmann G; Guillouet S; Nevoigt E
    Appl Environ Microbiol; 2011 Sep; 77(17):5857-67. PubMed ID: 21724879
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Role of Pex21p for Piggyback Import of Gpd1p and Pnc1p into Peroxisomes of Saccharomyces cerevisiae.
    Effelsberg D; Cruz-Zaragoza LD; Tonillo J; Schliebs W; Erdmann R
    J Biol Chem; 2015 Oct; 290(42):25333-42. PubMed ID: 26276932
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mutation in the peroxin-coding gene PEX22 contributing to high malate production in Saccharomyces cerevisiae.
    Negoro H; Sakamoto M; Kotaka A; Matsumura K; Hata Y
    J Biosci Bioeng; 2018 Feb; 125(2):211-217. PubMed ID: 28919252
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Overall kinetic mechanism of saccharopine dehydrogenase from Saccharomyces cerevisiae.
    Xu H; West AH; Cook PF
    Biochemistry; 2006 Oct; 45(39):12156-66. PubMed ID: 17002315
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The Peroxisomal NAD Carrier from Arabidopsis Imports NAD in Exchange with AMP.
    van Roermund CW; Schroers MG; Wiese J; Facchinelli F; Kurz S; Wilkinson S; Charton L; Wanders RJ; Waterham HR; Weber AP; Link N
    Plant Physiol; 2016 Jul; 171(3):2127-39. PubMed ID: 27208243
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Human peroxisomal NAD
    Chornyi S; Costa CF; IJlst L; Fransen M; Wanders RJA; van Roermund CWT; Waterham HR
    Free Radic Biol Med; 2023 Sep; 206():22-32. PubMed ID: 37355054
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effect of alternative NAD+-regenerating pathways on the formation of primary and secondary aroma compounds in a Saccharomyces cerevisiae glycerol-defective mutant.
    Jain VK; Divol B; Prior BA; Bauer FF
    Appl Microbiol Biotechnol; 2012 Jan; 93(1):131-41. PubMed ID: 21720823
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The two isoenzymes for yeast NAD+-dependent glycerol 3-phosphate dehydrogenase encoded by GPD1 and GPD2 have distinct roles in osmoadaptation and redox regulation.
    Ansell R; Granath K; Hohmann S; Thevelein JM; Adler L
    EMBO J; 1997 May; 16(9):2179-87. PubMed ID: 9171333
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A piggybacking mechanism enables peroxisomal localization of the glyoxylate cycle enzyme Mdh2 in yeast.
    Gabay-Maskit S; Cruz-Zaragoza LD; Shai N; Eisenstein M; Bibi C; Cohen N; Hansen T; Yifrach E; Harpaz N; Belostotsky R; Schliebs W; Schuldiner M; Erdmann R; Zalckvar E
    J Cell Sci; 2020 Dec; 133(24):. PubMed ID: 33177075
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The noninvolvement of MDH as NAD-oxidoreductase shuttle in rat liver peroxisomes.
    Horie S; Ishii H; Itoh S; Suga T
    Biochem Int; 1984 Mar; 8(3):353-9. PubMed ID: 6477606
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.