BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

224 related articles for article (PubMed ID: 28928432)

  • 41. Role of NADH shuttles in glucose-induced insulin secretion from fetal beta-cells.
    Tan C; Tuch BE; Tu J; Brown SA
    Diabetes; 2002 Oct; 51(10):2989-96. PubMed ID: 12351438
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Determination of the cytosolic free NAD/NADH ratio in Saccharomyces cerevisiae under steady-state and highly dynamic conditions.
    Canelas AB; van Gulik WM; Heijnen JJ
    Biotechnol Bioeng; 2008 Jul; 100(4):734-43. PubMed ID: 18383140
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Lysine245 plays a crucial role in stability and function of glycerol 3-phosphate dehydrogenase (Gpd1) in Saccharomyces cerevisiae.
    Pallapati AR; Sirigiri SD; Jain S; Ratnala V; Roy I
    J Cell Biochem; 2021 Nov; 122(11):1726-1736. PubMed ID: 34369003
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Survey of normal appearing mouse strain which lacks malic enzyme and Nad+-linked glycerol phosphate dehydrogenase: normal pancreatic beta cell function, but abnormal metabolite pattern in skeletal muscle.
    MacDonald MJ; Marshall LK
    Mol Cell Biochem; 2001 Apr; 220(1-2):117-25. PubMed ID: 11451371
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Anaerobic and aerobic batch cultivations of Saccharomyces cerevisiae mutants impaired in glycerol synthesis.
    Nissen TL; Hamann CW; Kielland-Brandt MC; Nielsen J; Villadsen J
    Yeast; 2000 Mar; 16(5):463-74. PubMed ID: 10705374
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Arabidopsis peroxisomal malate dehydrogenase functions in beta-oxidation but not in the glyoxylate cycle.
    Pracharoenwattana I; Cornah JE; Smith SM
    Plant J; 2007 May; 50(3):381-90. PubMed ID: 17376163
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Silencing the glycerol-3-phosphate dehydrogenase gene in Saccharomyces cerevisiae results in more ethanol being produced and less glycerol.
    He W; Ye S; Xue T; Xu S; Li W; Lu J; Cao L; Ye B; Chen Y
    Biotechnol Lett; 2014 Mar; 36(3):523-9. PubMed ID: 24150518
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Dynamic changes in the subcellular distribution of Gpd1p in response to cell stress.
    Jung S; Marelli M; Rachubinski RA; Goodlett DR; Aitchison JD
    J Biol Chem; 2010 Feb; 285(9):6739-49. PubMed ID: 20026609
    [TBL] [Abstract][Full Text] [Related]  

  • 49. The mitochondrial alcohol dehydrogenase Adh3p is involved in a redox shuttle in Saccharomyces cerevisiae.
    Bakker BM; Bro C; Kötter P; Luttik MA; van Dijken JP; Pronk JT
    J Bacteriol; 2000 Sep; 182(17):4730-7. PubMed ID: 10940011
    [TBL] [Abstract][Full Text] [Related]  

  • 50. [The effect of NAD kinase homologues on the beta-oxidation of unsaturated fatty acids with the double bond at an even position in Saccharomyces cerevisiae].
    Shi F; Li YF
    Sheng Wu Gong Cheng Xue Bao; 2006 Jul; 22(4):667-71. PubMed ID: 16894907
    [TBL] [Abstract][Full Text] [Related]  

  • 51. In vivo analysis of the mechanisms for oxidation of cytosolic NADH by Saccharomyces cerevisiae mitochondria.
    Overkamp KM; Bakker BM; Kötter P; van Tuijl A; de Vries S; van Dijken JP; Pronk JT
    J Bacteriol; 2000 May; 182(10):2823-30. PubMed ID: 10781551
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Uncoupled glycerol-3-phosphate shuttle in kidney cancer reveals that cytosolic GPD is essential to support lipid synthesis.
    Yao CH; Park JS; Kurmi K; Hu SH; Notarangelo G; Crowley J; Jacobson H; Hui S; Sharpe AH; Haigis MC
    Mol Cell; 2023 Apr; 83(8):1340-1349.e7. PubMed ID: 37084714
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Ability of cytosolic malate dehydrogenase and lactate dehydrogenase to increase the ratio of NADPH to NADH oxidation by cytosolic glycerol-3-phosphate dehydrogenase.
    Fahien LA; Laboy JI; Din ZZ; Prabhakar P; Budker T; Chobanian M
    Arch Biochem Biophys; 1999 Apr; 364(2):185-94. PubMed ID: 10190973
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Isolation and characterization of the yeast gene encoding the MDH3 isozyme of malate dehydrogenase.
    Steffan JS; McAlister-Henn L
    J Biol Chem; 1992 Dec; 267(34):24708-15. PubMed ID: 1447211
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Metabolic Impact of Redox Cofactor Perturbations on the Formation of Aroma Compounds in Saccharomyces cerevisiae.
    Bloem A; Sanchez I; Dequin S; Camarasa C
    Appl Environ Microbiol; 2016 Jan; 82(1):174-83. PubMed ID: 26475113
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Regulation of peroxisome dynamics by phosphorylation.
    Oeljeklaus S; Schummer A; Mastalski T; Platta HW; Warscheid B
    Biochim Biophys Acta; 2016 May; 1863(5):1027-37. PubMed ID: 26775584
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Metabolic impact of increased NADH availability in Saccharomyces cerevisiae.
    Hou J; Scalcinati G; Oldiges M; Vemuri GN
    Appl Environ Microbiol; 2010 Feb; 76(3):851-9. PubMed ID: 20023106
    [TBL] [Abstract][Full Text] [Related]  

  • 58. A proposed proton shuttle mechanism for saccharopine dehydrogenase from Saccharomyces cerevisiae.
    Xu H; Alguindigue SS; West AH; Cook PF
    Biochemistry; 2007 Jan; 46(3):871-82. PubMed ID: 17223709
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Physiological response to anaerobicity of glycerol-3-phosphate dehydrogenase mutants of Saccharomyces cerevisiae.
    Björkqvist S; Ansell R; Adler L; Lidén G
    Appl Environ Microbiol; 1997 Jan; 63(1):128-32. PubMed ID: 8979347
    [TBL] [Abstract][Full Text] [Related]  

  • 60. The oxidation state of active site thiols determines activity of saccharopine dehydrogenase at low pH.
    Bobyk KD; Kim SG; Kumar VP; Kim SK; West AH; Cook PF
    Arch Biochem Biophys; 2011 Sep; 513(2):71-80. PubMed ID: 21798231
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.