BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

297 related articles for article (PubMed ID: 28928647)

  • 1. Individual Differences in Frequency and Topography of Slow and Fast Sleep Spindles.
    Cox R; Schapiro AC; Manoach DS; Stickgold R
    Front Hum Neurosci; 2017; 11():433. PubMed ID: 28928647
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Sleep spindle maturity promotes slow oscillation-spindle coupling across child and adolescent development.
    Joechner AK; Hahn MA; Gruber G; Hoedlmoser K; Werkle-Bergner M
    Elife; 2023 Nov; 12():. PubMed ID: 37999945
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Increased oscillatory frequency of sleep spindles in combat-exposed veteran men with post-traumatic stress disorder.
    Wang C; Laxminarayan S; Ramakrishnan S; Dovzhenok A; Cashmere JD; Germain A; Reifman J
    Sleep; 2020 Oct; 43(10):. PubMed ID: 32239159
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effects of oral temazepam on sleep spindles during non-rapid eye movement sleep: A high-density EEG investigation.
    Plante DT; Goldstein MR; Cook JD; Smith R; Riedner BA; Rumble ME; Jelenchick L; Roth A; Tononi G; Benca RM; Peterson MJ
    Eur Neuropsychopharmacol; 2015 Oct; 25(10):1600-10. PubMed ID: 26195197
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Sleep spindle and psychopathology characteristics of frequent nightmare recallers.
    Picard-Deland C; Carr M; Paquette T; Saint-Onge K; Nielsen T
    Sleep Med; 2018 Oct; 50():113-131. PubMed ID: 30031989
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Large-scale structure and individual fingerprints of locally coupled sleep oscillations.
    Cox R; Mylonas DS; Manoach DS; Stickgold R
    Sleep; 2018 Dec; 41(12):. PubMed ID: 30184179
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Sleep spindles in humans: insights from intracranial EEG and unit recordings.
    Andrillon T; Nir Y; Staba RJ; Ferrarelli F; Cirelli C; Tononi G; Fried I
    J Neurosci; 2011 Dec; 31(49):17821-34. PubMed ID: 22159098
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Differential effects on fast and slow spindle activity, and the sleep slow oscillation in humans with carbamazepine and flunarizine to antagonize voltage-dependent Na+ and Ca2+ channel activity.
    Ayoub A; Aumann D; Hörschelmann A; Kouchekmanesch A; Paul P; Born J; Marshall L
    Sleep; 2013 Jun; 36(6):905-11. PubMed ID: 23729934
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Human Spindle Variability.
    Gonzalez C; Jiang X; Gonzalez-Martinez J; Halgren E
    J Neurosci; 2022 Jun; 42(22):4517-4537. PubMed ID: 35477906
    [TBL] [Abstract][Full Text] [Related]  

  • 10. An infant sleep electroencephalographic marker of thalamocortical connectivity predicts behavioral outcome in late infancy.
    Jaramillo V; Schoch SF; Markovic A; Kohler M; Huber R; Lustenberger C; Kurth S
    Neuroimage; 2023 Apr; 269():119924. PubMed ID: 36739104
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Spatiotemporal Dynamics of Sleep Spindle Sources Across NREM Sleep Cycles.
    Alfonsi V; D'Atri A; Gorgoni M; Scarpelli S; Mangiaruga A; Ferrara M; De Gennaro L
    Front Neurosci; 2019; 13():727. PubMed ID: 31354426
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Characterizing Sleep Spindles in Sheep.
    Schneider WT; Vas S; Nicol AU; Morton AJ
    eNeuro; 2020; 7(2):. PubMed ID: 32122958
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A comparison of two sleep spindle detection methods based on all night averages: individually adjusted vs. fixed frequencies.
    Ujma PP; Gombos F; Genzel L; Konrad BN; Simor P; Steiger A; Dresler M; Bódizs R
    Front Hum Neurosci; 2015; 9():52. PubMed ID: 25741264
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The Rise and Fall of Slow Wave Tides: Vacillations in Coupled Slow Wave/Spindle Pairing Shift the Composition of Slow Wave Activity in Accordance With Depth of Sleep.
    McConnell BV; Kronberg E; Medenblik LM; Kheyfets VO; Ramos AR; Sillau SH; Pulver RL; Bettcher BM
    Front Neurosci; 2022; 16():915934. PubMed ID: 35812239
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Role of corpus callosum in sleep spindle synchronization and coupling with slow waves.
    Bernardi G; Avvenuti G; Cataldi J; Lattanzi S; Ricciardi E; Polonara G; Silvestrini M; Siclari F; Fabri M; Bellesi M
    Brain Commun; 2021; 3(2):fcab108. PubMed ID: 34164621
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The individual adjustment method of sleep spindle analysis: methodological improvements and roots in the fingerprint paradigm.
    Bódizs R; Körmendi J; Rigó P; Lázár AS
    J Neurosci Methods; 2009 Mar; 178(1):205-13. PubMed ID: 19061915
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Automatic sleep spindles identification and classification with multitapers and convolution.
    Zapata IA; Wen P; Jones E; Fjaagesund S; Li Y
    Sleep; 2024 Jan; 47(1):. PubMed ID: 37294908
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Fast sleep spindle density is associated with rs4680 (Val108/158Met) genotype of catechol-O-methyltransferase (COMT).
    Schilling C; Gappa L; Schredl M; Streit F; Treutlein J; Frank J; Deuschle M; Meyer-Lindenberg A; Rietschel M; Witt SH
    Sleep; 2018 Mar; 41(3):. PubMed ID: 29325115
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Topographical distribution of fast and slow sleep spindles in medicated depressive patients.
    Nishida M; Nakashima Y; Nishikawa T
    J Clin Neurophysiol; 2014 Oct; 31(5):402-8. PubMed ID: 25271676
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Different maturational changes of fast and slow sleep spindles in the first four years of life.
    D'Atri A; Novelli L; Ferrara M; Bruni O; De Gennaro L
    Sleep Med; 2018 Feb; 42():73-82. PubMed ID: 29458750
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.