These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

208 related articles for article (PubMed ID: 28928650)

  • 1. Locomotor Sub-functions for Control of Assistive Wearable Robots.
    Sharbafi MA; Seyfarth A; Zhao G
    Front Neurorobot; 2017; 11():44. PubMed ID: 28928650
    [TBL] [Abstract][Full Text] [Related]  

  • 2. How locomotion sub-functions can control walking at different speeds?
    Ahmad Sharbafi M; Seyfarth A
    J Biomech; 2017 Feb; 53():163-170. PubMed ID: 28131486
    [TBL] [Abstract][Full Text] [Related]  

  • 3. BirdBot achieves energy-efficient gait with minimal control using avian-inspired leg clutching.
    Badri-Spröwitz A; Aghamaleki Sarvestani A; Sitti M; Daley MA
    Sci Robot; 2022 Mar; 7(64):eabg4055. PubMed ID: 35294220
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Oncilla Robot: A Versatile Open-Source Quadruped Research Robot With Compliant Pantograph Legs.
    Spröwitz AT; Tuleu A; Ajallooeian M; Vespignani M; Möckel R; Eckert P; D'Haene M; Degrave J; Nordmann A; Schrauwen B; Steil J; Ijspeert AJ
    Front Robot AI; 2018; 5():67. PubMed ID: 33500946
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Design of Low-Cost Modular Bio-Inspired Electric-Pneumatic Actuator (EPA)-Driven Legged Robots.
    Silva AB; Murcia M; Mohseni O; Takahashi R; Forner-Cordero A; Seyfarth A; Hosoda K; Sharbafi MA
    Biomimetics (Basel); 2024 Mar; 9(3):. PubMed ID: 38534849
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Combining Evolutionary and Adaptive Control Strategies for Quadruped Robotic Locomotion.
    Massi E; Vannucci L; Albanese U; Capolei MC; Vandesompele A; Urbain G; Sabatini AM; Dambre J; Laschi C; Tolu S; Falotico E
    Front Neurorobot; 2019; 13():71. PubMed ID: 31555118
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A fundamental mechanism of legged locomotion with hip torque and leg damping.
    Shen ZH; Seipel JE
    Bioinspir Biomim; 2012 Dec; 7(4):046010. PubMed ID: 22989956
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Spinal Helical Actuation Patterns for Locomotion in Soft Robots.
    Case JC; Gibert J; Booth J; SunSpiral V; Kramer-Bottiglio R
    IEEE Robot Autom Lett; 2020 Jul; 5(3):3814-3821. PubMed ID: 33088914
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Linking Gait Dynamics to Mechanical Cost of Legged Locomotion.
    Lee DV; Harris SL
    Front Robot AI; 2018; 5():111. PubMed ID: 33500990
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A new biarticular actuator design facilitates control of leg function in BioBiped3.
    Sharbafi MA; Rode C; Kurowski S; Scholz D; Möckel R; Radkhah K; Zhao G; Rashty AM; Stryk Ov; Seyfarth A
    Bioinspir Biomim; 2016 Jul; 11(4):046003. PubMed ID: 27367459
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Biarticular muscles in light of template models, experiments and robotics: a review.
    Schumacher C; Sharbafi M; Seyfarth A; Rode C
    J R Soc Interface; 2020 Feb; 17(163):20180413. PubMed ID: 32093540
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The Smooth Transition From Many-Legged to Bipedal Locomotion-Gradual Leg Force Reduction and its Impact on Total Ground Reaction Forces, Body Dynamics and Gait Transitions.
    Weihmann T
    Front Bioeng Biotechnol; 2021; 9():769684. PubMed ID: 35186911
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A Review and Evaluation of Control Architectures for Modular Legged and Climbing Robots.
    Prados C; Hernando M; Gambao E; Brunete A
    Biomimetics (Basel); 2024 May; 9(6):. PubMed ID: 38921199
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Convergent evolution and locomotion through complex terrain by insects, vertebrates and robots.
    Ritzmann RE; Quinn RD; Fischer MS
    Arthropod Struct Dev; 2004 Jul; 33(3):361-79. PubMed ID: 18089044
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Generation of Direct-, Retrograde-, and Source-Wave Gaits in Multi-Legged Locomotion in a Decentralized Manner via Embodied Sensorimotor Interaction.
    Ambe Y; Aoi S; Tsuchiya K; Matsuno F
    Front Neural Circuits; 2021; 15():706064. PubMed ID: 34552472
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Adaptive Control Strategies for Interlimb Coordination in Legged Robots: A Review.
    Aoi S; Manoonpong P; Ambe Y; Matsuno F; Wörgötter F
    Front Neurorobot; 2017; 11():39. PubMed ID: 28878645
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Running over unknown rough terrain with a one-legged planar robot.
    Andrews B; Miller B; Schmitt J; Clark JE
    Bioinspir Biomim; 2011 Jun; 6(2):026009. PubMed ID: 21555844
    [TBL] [Abstract][Full Text] [Related]  

  • 18. An analytical estimation of the energy cost for legged locomotion.
    Nishii J
    J Theor Biol; 2006 Feb; 238(3):636-45. PubMed ID: 16084529
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Generic Neural Locomotion Control Framework for Legged Robots.
    Thor M; Kulvicius T; Manoonpong P
    IEEE Trans Neural Netw Learn Syst; 2021 Sep; 32(9):4013-4025. PubMed ID: 32833657
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A general locomotion control framework for multi-legged locomotors.
    Chong B; O Aydin Y; Rieser JM; Sartoretti G; Wang T; Whitman J; Kaba A; Aydin E; McFarland C; Diaz Cruz K; Rankin JW; Michel KB; Nicieza A; Hutchinson JR; Choset H; Goldman DI
    Bioinspir Biomim; 2022 Jun; 17(4):. PubMed ID: 35533656
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.