BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

169 related articles for article (PubMed ID: 28928933)

  • 1. Revisiting inconsistency in large pharmacogenomic studies.
    Safikhani Z; Smirnov P; Freeman M; El-Hachem N; She A; Rene Q; Goldenberg A; Birkbak NJ; Hatzis C; Shi L; Beck AH; Aerts HJWL; Quackenbush J; Haibe-Kains B
    F1000Res; 2016; 5():2333. PubMed ID: 28928933
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Assessment of pharmacogenomic agreement.
    Safikhani Z; El-Hachem N; Quevedo R; Smirnov P; Goldenberg A; Juul Birkbak N; Mason C; Hatzis C; Shi L; Aerts HJ; Quackenbush J; Haibe-Kains B
    F1000Res; 2016; 5():825. PubMed ID: 27408686
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Integrating heterogeneous drug sensitivity data from cancer pharmacogenomic studies.
    Pozdeyev N; Yoo M; Mackie R; Schweppe RE; Tan AC; Haugen BR
    Oncotarget; 2016 Aug; 7(32):51619-51625. PubMed ID: 27322211
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Improved anticancer drug response prediction in cell lines using matrix factorization with similarity regularization.
    Wang L; Li X; Zhang L; Gao Q
    BMC Cancer; 2017 Aug; 17(1):513. PubMed ID: 28768489
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Evaluating the consistency of large-scale pharmacogenomic studies.
    Rahman R; Dhruba SR; Matlock K; De-Niz C; Ghosh S; Pal R
    Brief Bioinform; 2019 Sep; 20(5):1734-1753. PubMed ID: 31846027
    [TBL] [Abstract][Full Text] [Related]  

  • 6. False-negative errors in next-generation sequencing contribute substantially to inconsistency of mutation databases.
    Kim YH; Song Y; Kim JK; Kim TM; Sim HW; Kim HL; Jang H; Kim YW; Hong KM
    PLoS One; 2019; 14(9):e0222535. PubMed ID: 31513681
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Folic acid supplementation and malaria susceptibility and severity among people taking antifolate antimalarial drugs in endemic areas.
    Crider K; Williams J; Qi YP; Gutman J; Yeung L; Mai C; Finkelstain J; Mehta S; Pons-Duran C; Menéndez C; Moraleda C; Rogers L; Daniels K; Green P
    Cochrane Database Syst Rev; 2022 Feb; 2(2022):. PubMed ID: 36321557
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Discordancy Partitioning for Validating Potentially Inconsistent Pharmacogenomic Studies.
    Rao JS; Liu H
    Sci Rep; 2017 Nov; 7(1):15169. PubMed ID: 29123200
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A Methodological Framework to Discover Pharmacogenomic Interactions Based on Random Forests.
    Fasola S; Cilluffo G; Montalbano L; Malizia V; Ferrante G; La Grutta S
    Genes (Basel); 2021 Jun; 12(6):. PubMed ID: 34207374
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Systematic assessment of multi-gene predictors of pan-cancer cell line sensitivity to drugs exploiting gene expression data.
    Nguyen L; Dang CC; Ballester PJ
    F1000Res; 2016; 5():. PubMed ID: 28299173
    [No Abstract]   [Full Text] [Related]  

  • 11. Super.FELT: supervised feature extraction learning using triplet loss for drug response prediction with multi-omics data.
    Park S; Soh J; Lee H
    BMC Bioinformatics; 2021 May; 22(1):269. PubMed ID: 34034645
    [TBL] [Abstract][Full Text] [Related]  

  • 12. CellMinerCDB for Integrative Cross-Database Genomics and Pharmacogenomics Analyses of Cancer Cell Lines.
    Rajapakse VN; Luna A; Yamade M; Loman L; Varma S; Sunshine M; Iorio F; Sousa FG; Elloumi F; Aladjem MI; Thomas A; Sander C; Kohn KW; Benes CH; Garnett M; Reinhold WC; Pommier Y
    iScience; 2018 Dec; 10():247-264. PubMed ID: 30553813
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Genomics of Drug Sensitivity in Cancer (GDSC): a resource for therapeutic biomarker discovery in cancer cells.
    Yang W; Soares J; Greninger P; Edelman EJ; Lightfoot H; Forbes S; Bindal N; Beare D; Smith JA; Thompson IR; Ramaswamy S; Futreal PA; Haber DA; Stratton MR; Benes C; McDermott U; Garnett MJ
    Nucleic Acids Res; 2013 Jan; 41(Database issue):D955-61. PubMed ID: 23180760
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Predicting breast cancer drug response using a multiple-layer cell line drug response network model.
    Huang S; Hu P; Lakowski TM
    BMC Cancer; 2021 May; 21(1):648. PubMed ID: 34059012
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Ensembled machine learning framework for drug sensitivity prediction.
    Sharma A; Rani R
    IET Syst Biol; 2020 Feb; 14(1):39-46. PubMed ID: 31931480
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Leveraging multi-source to resolve inconsistency across pharmacogenomic datasets in drug sensitivity prediction.
    Das T; Bhattarai K; Rajaganapathy S; Wang L; Cerhan JR; Zong N
    medRxiv; 2023 Jun; ():. PubMed ID: 37333219
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Deep learning and multi-omics approach to predict drug responses in cancer.
    Wang C; Lye X; Kaalia R; Kumar P; Rajapakse JC
    BMC Bioinformatics; 2022 Nov; 22(Suppl 10):632. PubMed ID: 36443676
    [TBL] [Abstract][Full Text] [Related]  

  • 18. NeuPD-A Neural Network-Based Approach to Predict Antineoplastic Drug Response.
    Shahzad M; Tahir MA; Alhussein M; Mobin A; Shams Malick RA; Anwar MS
    Diagnostics (Basel); 2023 Jun; 13(12):. PubMed ID: 37370938
    [TBL] [Abstract][Full Text] [Related]  

  • 19. PharmacoDB 2.0: improving scalability and transparency of in vitro pharmacogenomics analysis.
    Feizi N; Nair SK; Smirnov P; Beri G; Eeles C; Esfahani PN; Nakano M; Tkachuk D; Mammoliti A; Gorobets E; Mer AS; Lin E; Yu Y; Martin S; Hafner M; Haibe-Kains B
    Nucleic Acids Res; 2022 Jan; 50(D1):D1348-D1357. PubMed ID: 34850112
    [TBL] [Abstract][Full Text] [Related]  

  • 20.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 9.