These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
3. Integrating heterogeneous drug sensitivity data from cancer pharmacogenomic studies. Pozdeyev N; Yoo M; Mackie R; Schweppe RE; Tan AC; Haugen BR Oncotarget; 2016 Aug; 7(32):51619-51625. PubMed ID: 27322211 [TBL] [Abstract][Full Text] [Related]
4. Improved anticancer drug response prediction in cell lines using matrix factorization with similarity regularization. Wang L; Li X; Zhang L; Gao Q BMC Cancer; 2017 Aug; 17(1):513. PubMed ID: 28768489 [TBL] [Abstract][Full Text] [Related]
5. Evaluating the consistency of large-scale pharmacogenomic studies. Rahman R; Dhruba SR; Matlock K; De-Niz C; Ghosh S; Pal R Brief Bioinform; 2019 Sep; 20(5):1734-1753. PubMed ID: 31846027 [TBL] [Abstract][Full Text] [Related]
6. False-negative errors in next-generation sequencing contribute substantially to inconsistency of mutation databases. Kim YH; Song Y; Kim JK; Kim TM; Sim HW; Kim HL; Jang H; Kim YW; Hong KM PLoS One; 2019; 14(9):e0222535. PubMed ID: 31513681 [TBL] [Abstract][Full Text] [Related]
7. A Methodological Framework to Discover Pharmacogenomic Interactions Based on Random Forests. Fasola S; Cilluffo G; Montalbano L; Malizia V; Ferrante G; La Grutta S Genes (Basel); 2021 Jun; 12(6):. PubMed ID: 34207374 [TBL] [Abstract][Full Text] [Related]
9. Discordancy Partitioning for Validating Potentially Inconsistent Pharmacogenomic Studies. Rao JS; Liu H Sci Rep; 2017 Nov; 7(1):15169. PubMed ID: 29123200 [TBL] [Abstract][Full Text] [Related]
10. Systematic assessment of multi-gene predictors of pan-cancer cell line sensitivity to drugs exploiting gene expression data. Nguyen L; Dang CC; Ballester PJ F1000Res; 2016; 5():. PubMed ID: 28299173 [No Abstract] [Full Text] [Related]
11. Super.FELT: supervised feature extraction learning using triplet loss for drug response prediction with multi-omics data. Park S; Soh J; Lee H BMC Bioinformatics; 2021 May; 22(1):269. PubMed ID: 34034645 [TBL] [Abstract][Full Text] [Related]
12. CellMinerCDB for Integrative Cross-Database Genomics and Pharmacogenomics Analyses of Cancer Cell Lines. Rajapakse VN; Luna A; Yamade M; Loman L; Varma S; Sunshine M; Iorio F; Sousa FG; Elloumi F; Aladjem MI; Thomas A; Sander C; Kohn KW; Benes CH; Garnett M; Reinhold WC; Pommier Y iScience; 2018 Dec; 10():247-264. PubMed ID: 30553813 [TBL] [Abstract][Full Text] [Related]
13. Genomics of Drug Sensitivity in Cancer (GDSC): a resource for therapeutic biomarker discovery in cancer cells. Yang W; Soares J; Greninger P; Edelman EJ; Lightfoot H; Forbes S; Bindal N; Beare D; Smith JA; Thompson IR; Ramaswamy S; Futreal PA; Haber DA; Stratton MR; Benes C; McDermott U; Garnett MJ Nucleic Acids Res; 2013 Jan; 41(Database issue):D955-61. PubMed ID: 23180760 [TBL] [Abstract][Full Text] [Related]
14. Predicting breast cancer drug response using a multiple-layer cell line drug response network model. Huang S; Hu P; Lakowski TM BMC Cancer; 2021 May; 21(1):648. PubMed ID: 34059012 [TBL] [Abstract][Full Text] [Related]
15. Ensembled machine learning framework for drug sensitivity prediction. Sharma A; Rani R IET Syst Biol; 2020 Feb; 14(1):39-46. PubMed ID: 31931480 [TBL] [Abstract][Full Text] [Related]
16. Leveraging multi-source to resolve inconsistency across pharmacogenomic datasets in drug sensitivity prediction. Das T; Bhattarai K; Rajaganapathy S; Wang L; Cerhan JR; Zong N medRxiv; 2023 Jun; ():. PubMed ID: 37333219 [TBL] [Abstract][Full Text] [Related]
17. Deep learning and multi-omics approach to predict drug responses in cancer. Wang C; Lye X; Kaalia R; Kumar P; Rajapakse JC BMC Bioinformatics; 2022 Nov; 22(Suppl 10):632. PubMed ID: 36443676 [TBL] [Abstract][Full Text] [Related]
18. NeuPD-A Neural Network-Based Approach to Predict Antineoplastic Drug Response. Shahzad M; Tahir MA; Alhussein M; Mobin A; Shams Malick RA; Anwar MS Diagnostics (Basel); 2023 Jun; 13(12):. PubMed ID: 37370938 [TBL] [Abstract][Full Text] [Related]
19. PharmacoDB 2.0: improving scalability and transparency of in vitro pharmacogenomics analysis. Feizi N; Nair SK; Smirnov P; Beri G; Eeles C; Esfahani PN; Nakano M; Tkachuk D; Mammoliti A; Gorobets E; Mer AS; Lin E; Yu Y; Martin S; Hafner M; Haibe-Kains B Nucleic Acids Res; 2022 Jan; 50(D1):D1348-D1357. PubMed ID: 34850112 [TBL] [Abstract][Full Text] [Related]
20. Predicting Cancer Drug Response using a Recommender System. Suphavilai C; Bertrand D; Nagarajan N Bioinformatics; 2018 Nov; 34(22):3907-3914. PubMed ID: 29868820 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]