BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

315 related articles for article (PubMed ID: 28929088)

  • 1. Microbial Invasion vs. Tick Immune Regulation.
    Sonenshine DE; Macaluso KR
    Front Cell Infect Microbiol; 2017; 7():390. PubMed ID: 28929088
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Interaction of the tick immune system with transmitted pathogens.
    Hajdušek O; Síma R; Ayllón N; Jalovecká M; Perner J; de la Fuente J; Kopáček P
    Front Cell Infect Microbiol; 2013; 3():26. PubMed ID: 23875177
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Tick innate immunity.
    Kopácek P; Hajdusek O; Buresová V; Daffre S
    Adv Exp Med Biol; 2010; 708():137-62. PubMed ID: 21528697
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Relatively low prevalence of Babesia microti and Anaplasma phagocytophilum in Ixodes scapularis ticks collected in the Lehigh Valley region of eastern Pennsylvania.
    Edwards MJ; Barbalato LA; Makkapati A; Pham KD; Bugbee LM
    Ticks Tick Borne Dis; 2015 Sep; 6(6):812-9. PubMed ID: 26318263
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The case for oxidative stress molecule involvement in the tick-pathogen interactions -an omics approach.
    Hernandez EP; Talactac MR; Fujisaki K; Tanaka T
    Dev Comp Immunol; 2019 Nov; 100():103409. PubMed ID: 31200008
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Saliva, salivary gland, and hemolymph collection from Ixodes scapularis ticks.
    Patton TG; Dietrich G; Brandt K; Dolan MC; Piesman J; Gilmore RD
    J Vis Exp; 2012 Feb; (60):. PubMed ID: 22371172
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Prevalence Rates of Borrelia burgdorferi (Spirochaetales: Spirochaetaceae), Anaplasma phagocytophilum (Rickettsiales: Anaplasmataceae), and Babesia microti (Piroplasmida: Babesiidae) in Host-Seeking Ixodes scapularis (Acari: Ixodidae) from Pennsylvania.
    Hutchinson ML; Strohecker MD; Simmons TW; Kyle AD; Helwig MW
    J Med Entomol; 2015 Jul; 52(4):693-8. PubMed ID: 26335476
    [TBL] [Abstract][Full Text] [Related]  

  • 8.
    Kitsou C; Pal U
    Front Cell Infect Microbiol; 2018; 8():176. PubMed ID: 29896452
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The Distinct Transcriptional Response of the Midgut of
    Martins LA; Galletti MFBM; Ribeiro JM; Fujita A; Costa FB; Labruna MB; Daffre S; Fogaça AC
    Front Cell Infect Microbiol; 2017; 7():129. PubMed ID: 28503490
    [No Abstract]   [Full Text] [Related]  

  • 10. Induced Transient Immune Tolerance in Ticks and Vertebrate Host: A Keystone of Tick-Borne Diseases?
    Boulanger N; Wikel S
    Front Immunol; 2021; 12():625993. PubMed ID: 33643313
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Molecular characterization and related aspects of the innate immune response in ticks.
    Sonenshine DE; Hynes WL
    Front Biosci; 2008 May; 13():7046-63. PubMed ID: 18508715
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Innate Immune Response to Tick-Borne Pathogens: Cellular and Molecular Mechanisms Induced in the Hosts.
    Torina A; Villari S; Blanda V; Vullo S; La Manna MP; Shekarkar Azgomi M; Di Liberto D; de la Fuente J; Sireci G
    Int J Mol Sci; 2020 Jul; 21(15):. PubMed ID: 32751625
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Detection and Differentiation of Lyme Spirochetes and Other Tick-Borne Pathogens from Blood Using Real-Time PCR with Molecular Beacons.
    Schlachter S; Chan K; Marras SAE; Parveen N
    Methods Mol Biol; 2017; 1616():155-170. PubMed ID: 28600768
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Tick-human interactions: from allergic klendusity to the α-Gal syndrome.
    Cabezas-Cruz A; Hodžić A; Mateos-Hernández L; Contreras M; de la Fuente J
    Biochem J; 2021 May; 478(9):1783-1794. PubMed ID: 33988703
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Tick borne zoonosis: selected clinical and diagnostic aspects].
    Sambri V; Marangoni A; Storni E; Cavrini F; Moroni A; Sparacino M; Cevenini R
    Parassitologia; 2004 Jun; 46(1-2):109-13. PubMed ID: 15305697
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Serine Protease Inhibitors in Ticks: An Overview of Their Role in Tick Biology and Tick-Borne Pathogen Transmission.
    Blisnick AA; Foulon T; Bonnet SI
    Front Cell Infect Microbiol; 2017; 7():199. PubMed ID: 28589099
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Anaplasma phagocytophilum Uses Common Strategies for Infection of Ticks and Vertebrate Hosts.
    de la Fuente J; Estrada-Peña A; Cabezas-Cruz A; Kocan KM
    Trends Microbiol; 2016 Mar; 24(3):173-180. PubMed ID: 26718986
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Anaplasma phagocytophilum: deceptively simple or simply deceptive?
    Severo MS; Stephens KD; Kotsyfakis M; Pedra JH
    Future Microbiol; 2012 Jun; 7(6):719-31. PubMed ID: 22702526
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The incidence of
    Pañczuk A; Tokarska-Rodak M; Kozioł-Montewka M; Plewik D
    J Vector Borne Dis; 2016; 53(4):348-354. PubMed ID: 28035112
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A clear and present danger: tick-borne diseases in Europe.
    Heyman P; Cochez C; Hofhuis A; van der Giessen J; Sprong H; Porter SR; Losson B; Saegerman C; Donoso-Mantke O; Niedrig M; Papa A
    Expert Rev Anti Infect Ther; 2010 Jan; 8(1):33-50. PubMed ID: 20014900
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.