BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

351 related articles for article (PubMed ID: 28929304)

  • 1. Embryonic body culturing in an all-glass microfluidic device with laser-processed 4 μm thick ultra-thin glass sheet filter.
    Yalikun Y; Tanaka N; Hosokawa Y; Iino T; Tanaka Y
    Biomed Microdevices; 2017 Sep; 19(4):85. PubMed ID: 28929304
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A PDMS-Based Microfluidic Hanging Drop Chip for Embryoid Body Formation.
    Wu HW; Hsiao YH; Chen CC; Yet SF; Hsu CH
    Molecules; 2016 Jul; 21(7):. PubMed ID: 27399655
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Fabrication of a microfluidic device for the compartmentalization of neuron soma and axons.
    Harris J; Lee H; Vahidi B; Tu C; Cribbs D; Jeon NL; Cotman C
    J Vis Exp; 2007; (7):261. PubMed ID: 18989432
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Embryoid body culture of mouse embryonic stem cells using microwell and micropatterned chips.
    Sakai Y; Yoshiura Y; Nakazawa K
    J Biosci Bioeng; 2011 Jan; 111(1):85-91. PubMed ID: 20863754
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Fabrication of reversibly adhesive fluidic devices using magnetism.
    Rafat M; Raad DR; Rowat AC; Auguste DT
    Lab Chip; 2009 Oct; 9(20):3016-9. PubMed ID: 19789760
    [TBL] [Abstract][Full Text] [Related]  

  • 6. PDMS-free microfluidic cell culture with integrated gas supply through a porous membrane of anodized aluminum oxide.
    Bunge F; van den Driesche S; Vellekoop MJ
    Biomed Microdevices; 2018 Nov; 20(4):98. PubMed ID: 30413897
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A microfluidic traps system supporting prolonged culture of human embryonic stem cells aggregates.
    Khoury M; Bransky A; Korin N; Konak LC; Enikolopov G; Tzchori I; Levenberg S
    Biomed Microdevices; 2010 Dec; 12(6):1001-8. PubMed ID: 20665114
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A Glass-Ultra-Thin PDMS Film-Glass Microfluidic Device for Digital PCR Application Based on Flexible Mold Peel-Off Process.
    Xia Y; Chu X; Zhao C; Wang N; Yu J; Jin Y; Sun L; Ma S
    Micromachines (Basel); 2022 Oct; 13(10):. PubMed ID: 36296020
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Microfluidic perfusion culture.
    Hattori K; Sugiura S; Kanamori T
    Methods Mol Biol; 2014; 1104():251-63. PubMed ID: 24297421
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A laser-based technology for fabricating a soda-lime glass based microfluidic device for circulating tumour cell capture.
    Nieto D; Couceiro R; Aymerich M; Lopez-Lopez R; Abal M; Flores-Arias MT
    Colloids Surf B Biointerfaces; 2015 Oct; 134():363-9. PubMed ID: 26218523
    [TBL] [Abstract][Full Text] [Related]  

  • 11. An all-glass 12 μm ultra-thin and flexible micro-fluidic chip fabricated by femtosecond laser processing.
    Yalikun Y; Hosokawa Y; Iino T; Tanaka Y
    Lab Chip; 2016 Jul; 16(13):2427-33. PubMed ID: 27225521
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Functional maintenance of differentiated embryoid bodies in microfluidic systems: a platform for personalized medicine.
    Guven S; Lindsey JS; Poudel I; Chinthala S; Nickerson MD; Gerami-Naini B; Gurkan UA; Anchan RM; Demirci U
    Stem Cells Transl Med; 2015 Mar; 4(3):261-8. PubMed ID: 25666845
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Development of a multi-layer microfluidic array chip to culture and replate uniform-sized embryoid bodies without manual cell retrieval.
    Kang E; Choi YY; Jun Y; Chung BG; Lee SH
    Lab Chip; 2010 Oct; 10(20):2651-4. PubMed ID: 20740239
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Different in vitro cellular responses to tamoxifen treatment in polydimethylsiloxane-based devices compared to normal cell culture.
    Wang L; Yu L; Grist S; Cheung KC; Chen DDY
    J Chromatogr B Analyt Technol Biomed Life Sci; 2017 Nov; 1068-1069():105-111. PubMed ID: 29073477
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Microfluidic devices for culturing primary mammalian neurons at low densities.
    Millet LJ; Stewart ME; Sweedler JV; Nuzzo RG; Gillette MU
    Lab Chip; 2007 Aug; 7(8):987-94. PubMed ID: 17653340
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Optofluidic bioimaging platform for quantitative phase imaging of lab on a chip devices using digital holographic microscopy.
    Pandiyan VP; John R
    Appl Opt; 2016 Jan; 55(3):A54-9. PubMed ID: 26835958
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Rapid Prototyping of a Cyclic Olefin Copolymer Microfluidic Device for Automated Oocyte Culturing.
    Berenguel-Alonso M; Sabés-Alsina M; Morató R; Ymbern O; Rodríguez-Vázquez L; Talló-Parra O; Alonso-Chamarro J; Puyol M; López-Béjar M
    SLAS Technol; 2017 Oct; 22(5):507-517. PubMed ID: 28944724
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Large-Scale Integration of All-Glass Valves on a Microfluidic Device.
    Yalikun Y; Tanaka Y
    Micromachines (Basel); 2016 May; 7(5):. PubMed ID: 30404259
    [TBL] [Abstract][Full Text] [Related]  

  • 19. 3-Dimensional cell culture for on-chip differentiation of stem cells in embryoid body.
    Kim C; Lee KS; Bang JH; Kim YE; Kim MC; Oh KW; Lee SH; Kang JY
    Lab Chip; 2011 Mar; 11(5):874-82. PubMed ID: 21249238
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Tunable shrink-induced honeycomb microwell arrays for uniform embryoid bodies.
    Nguyen D; Sa S; Pegan JD; Rich B; Xiang G; McCloskey KE; Manilay JO; Khine M
    Lab Chip; 2009 Dec; 9(23):3338-44. PubMed ID: 19904398
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.