These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
421 related articles for article (PubMed ID: 28929638)
1. Interactions of WRKY15 and WRKY33 transcription factors and their roles in the resistance of oilseed rape to Sclerotinia infection. Liu F; Li X; Wang M; Wen J; Yi B; Shen J; Ma C; Fu T; Tu J Plant Biotechnol J; 2018 Apr; 16(4):911-925. PubMed ID: 28929638 [TBL] [Abstract][Full Text] [Related]
2. Overexpression of BnWRKY33 in oilseed rape enhances resistance to Sclerotinia sclerotiorum. Wang Z; Fang H; Chen Y; Chen K; Li G; Gu S; Tan X Mol Plant Pathol; 2014 Sep; 15(7):677-89. PubMed ID: 24521393 [TBL] [Abstract][Full Text] [Related]
3. Comparative transcriptomic analysis uncovers the complex genetic network for resistance to Sclerotinia sclerotiorum in Brassica napus. Wu J; Zhao Q; Yang Q; Liu H; Li Q; Yi X; Cheng Y; Guo L; Fan C; Zhou Y Sci Rep; 2016 Jan; 6():19007. PubMed ID: 26743436 [TBL] [Abstract][Full Text] [Related]
4. A global study of transcriptome dynamics in canola (Brassica napus L.) responsive to Sclerotinia sclerotiorum infection using RNA-Seq. Joshi RK; Megha S; Rahman MH; Basu U; Kav NN Gene; 2016 Sep; 590(1):57-67. PubMed ID: 27265030 [TBL] [Abstract][Full Text] [Related]
5. MYB43 in Oilseed Rape ( Jiang J; Liao X; Jin X; Tan L; Lu Q; Yuan C; Xue Y; Yin N; Lin N; Chai Y Genes (Basel); 2020 May; 11(5):. PubMed ID: 32455973 [No Abstract] [Full Text] [Related]
6. Defense to Sclerotinia sclerotiorum in oilseed rape is associated with the sequential activations of salicylic acid signaling and jasmonic acid signaling. Wang Z; Tan X; Zhang Z; Gu S; Li G; Shi H Plant Sci; 2012 Mar; 184():75-82. PubMed ID: 22284712 [TBL] [Abstract][Full Text] [Related]
7. Detecting the Hormonal Pathways in Oilseed Rape behind Induced Systemic Resistance by Trichoderma harzianum TH12 to Sclerotinia sclerotiorum. Alkooranee JT; Aledan TR; Ali AK; Lu G; Zhang X; Wu J; Fu C; Li M PLoS One; 2017; 12(1):e0168850. PubMed ID: 28045929 [TBL] [Abstract][Full Text] [Related]
8. BnaMPK6 is a determinant of quantitative disease resistance against Sclerotinia sclerotiorum in oilseed rape. Wang Z; Zhao FY; Tang MQ; Chen T; Bao LL; Cao J; Li YL; Yang YH; Zhu KM; Liu S; Tan XL Plant Sci; 2020 Feb; 291():110362. PubMed ID: 31928657 [TBL] [Abstract][Full Text] [Related]
9. Transcription factor WRKY28 curbs WRKY33-mediated resistance to Sclerotinia sclerotiorum in Brassica napus. Zhang K; Liu F; Wang Z; Zhuo C; Hu K; Li X; Wen J; Yi B; Shen J; Ma C; Fu T; Tu J Plant Physiol; 2022 Nov; 190(4):2757-2774. PubMed ID: 36130294 [TBL] [Abstract][Full Text] [Related]
10. Tight regulation of the interaction between Brassica napus and Sclerotinia sclerotiorum at the microRNA level. Cao JY; Xu YP; Zhao L; Li SS; Cai XZ Plant Mol Biol; 2016 Sep; 92(1-2):39-55. PubMed ID: 27325118 [TBL] [Abstract][Full Text] [Related]
11. Genome-wide identification of the NPR1-like gene family in Brassica napus and functional characterization of BnaNPR1 in resistance to Sclerotinia sclerotiorum. Wang Z; Ma LY; Li X; Zhao FY; Sarwar R; Cao J; Li YL; Ding LN; Zhu KM; Yang YH; Tan XL Plant Cell Rep; 2020 Jun; 39(6):709-722. PubMed ID: 32140767 [TBL] [Abstract][Full Text] [Related]
12. Overexpression of Brassica napus MPK4 enhances resistance to Sclerotinia sclerotiorum in oilseed rape. Wang Z; Mao H; Dong C; Ji R; Cai L; Fu H; Liu S Mol Plant Microbe Interact; 2009 Mar; 22(3):235-44. PubMed ID: 19245318 [TBL] [Abstract][Full Text] [Related]
13. The Arabidopsis Mediator Complex Subunit16 Is a Key Component of Basal Resistance against the Necrotrophic Fungal Pathogen Sclerotinia sclerotiorum. Wang C; Yao J; Du X; Zhang Y; Sun Y; Rollins JA; Mou Z Plant Physiol; 2015 Sep; 169(1):856-72. PubMed ID: 26143252 [TBL] [Abstract][Full Text] [Related]
14. Overexpression of AtWRKY28 and AtWRKY75 in Arabidopsis enhances resistance to oxalic acid and Sclerotinia sclerotiorum. Chen X; Liu J; Lin G; Wang A; Wang Z; Lu G Plant Cell Rep; 2013 Oct; 32(10):1589-99. PubMed ID: 23749099 [TBL] [Abstract][Full Text] [Related]
15. Genome Wide Identification and Functional Prediction of Long Non-Coding RNAs Responsive to Sclerotinia sclerotiorum Infection in Brassica napus. Joshi RK; Megha S; Basu U; Rahman MH; Kav NN PLoS One; 2016; 11(7):e0158784. PubMed ID: 27388760 [TBL] [Abstract][Full Text] [Related]
16. Glutamate Receptor-like (GLR) Family in Gulzar RMA; Ren CX; Fang X; Xu YP; Saand MA; Cai XZ Int J Mol Sci; 2024 May; 25(11):. PubMed ID: 38891858 [TBL] [Abstract][Full Text] [Related]
18. Screening of microRNAs and target genes involved in Sclerotinia sclerotiorum (Lib.) infection in Brassica napus L. Xie L; Jian H; Dai H; Yang Y; Liu Y; Wei L; Tan M; Li J; Liu L BMC Plant Biol; 2023 Oct; 23(1):479. PubMed ID: 37807039 [TBL] [Abstract][Full Text] [Related]
19. Co-expression of chimeric chitinase and a polygalacturonase-inhibiting protein in transgenic canola (Brassica napus) confers enhanced resistance to Sclerotinia sclerotiorum. Ziaei M; Motallebi M; Zamani MR; Panjeh NZ Biotechnol Lett; 2016 Jun; 38(6):1021-32. PubMed ID: 26875090 [TBL] [Abstract][Full Text] [Related]
20. Knockout of the lignin pathway gene BnF5H decreases the S/G lignin compositional ratio and improves Sclerotinia sclerotiorum resistance in Brassica napus. Cao Y; Yan X; Ran S; Ralph J; Smith RA; Chen X; Qu C; Li J; Liu L Plant Cell Environ; 2022 Jan; 45(1):248-261. PubMed ID: 34697825 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]