These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
3. Antimicrobial and osteogenic properties of silver-ion-implanted stainless steel. Qin H; Cao H; Zhao Y; Jin G; Cheng M; Wang J; Jiang Y; An Z; Zhang X; Liu X ACS Appl Mater Interfaces; 2015 May; 7(20):10785-94. PubMed ID: 25952114 [TBL] [Abstract][Full Text] [Related]
4. Antimicrobial effects of silver nanoparticles against bacterial cells adhered to stainless steel surfaces. Araújo EA; Andrade NJ; da Silva LH; Bernardes PC; de C Teixeira AV; de Sá JP; Fialho JF; Fernandes PE J Food Prot; 2012 Apr; 75(4):701-5. PubMed ID: 22488058 [TBL] [Abstract][Full Text] [Related]
5. The generation of wear-resistant antimicrobial stainless steel surfaces by active screen plasma alloying with N and nanocrystalline Ag. Dong Y; Li X; Sammons R; Dong H J Biomed Mater Res B Appl Biomater; 2010 Apr; 93(1):185-93. PubMed ID: 20119942 [TBL] [Abstract][Full Text] [Related]
6. Coating a stainless steel plate with silver nanoparticles by the sonochemical method. Soloviev M; Gedanken A Ultrason Sonochem; 2011 Jan; 18(1):356-62. PubMed ID: 20675175 [TBL] [Abstract][Full Text] [Related]
7. Food-Safe Modification of Stainless Steel Food-Processing Surfaces to Reduce Bacterial Biofilms. Awad TS; Asker D; Hatton BD ACS Appl Mater Interfaces; 2018 Jul; 10(27):22902-22912. PubMed ID: 29888590 [TBL] [Abstract][Full Text] [Related]
8. Evenly distributed thin-film Ag coating on stainless plate by tricomponent Ag/silicate/PU with antimicrobial and biocompatible properties. Huang YH; Chen MH; Lee BH; Hsieh KH; Tu YK; Lin JJ; Chang CH ACS Appl Mater Interfaces; 2014 Nov; 6(22):20324-33. PubMed ID: 25307230 [TBL] [Abstract][Full Text] [Related]
9. Short communication: Evaluation of a sol-gel-based stainless steel surface modification to reduce fouling and biofilm formation during pasteurization of milk. Liu DZ; Jindal S; Amamcharla J; Anand S; Metzger L J Dairy Sci; 2017 Apr; 100(4):2577-2581. PubMed ID: 28131567 [TBL] [Abstract][Full Text] [Related]
10. In vitro assessment of stainless steel orthodontic brackets coated with titanium oxide mixed Ag for anti-adherent and antibacterial properties against Streptococcus mutans and Porphyromonas gingivalis. Fatani EJ; Almutairi HH; Alharbi AO; Alnakhli YO; Divakar DD; Muzaheed ; Alkheraif AA; Khan AA Microb Pathog; 2017 Nov; 112():190-194. PubMed ID: 28966064 [TBL] [Abstract][Full Text] [Related]
11. A comparative study of fine polished stainless steel, TiN and TiN/Ag surfaces: adhesion and attachment strength of Listeria monocytogenes as well as anti-listerial effect. Skovager A; Whitehead K; Wickens D; Verran J; Ingmer H; Arneborg N Colloids Surf B Biointerfaces; 2013 Sep; 109():190-6. PubMed ID: 23643915 [TBL] [Abstract][Full Text] [Related]
12. Evidence of extensive diversity in bacterial adherence mechanisms that exploit unanticipated stainless steel surface structural complexity for biofilm formation. Davis EM; Li D; Shahrooei M; Yu B; Muruve D; Irvin RT Acta Biomater; 2013 Apr; 9(4):6236-44. PubMed ID: 23212080 [TBL] [Abstract][Full Text] [Related]
13. Reduction of bacterial adhesion on ion-implanted stainless steel surfaces. Zhao Q; Liu Y; Wang C; Wang S; Peng N; Jeynes C Med Eng Phys; 2008 Apr; 30(3):341-9. PubMed ID: 17544806 [TBL] [Abstract][Full Text] [Related]
14. Adsorption on stainless steel surfaces of biosurfactants produced by gram-negative and gram-positive bacteria: consequence on the bioadhesive behavior of Listeria monocytogenes. Meylheuc T; Methivier C; Renault M; Herry JM; Pradier CM; Bellon-Fontaine MN Colloids Surf B Biointerfaces; 2006 Oct; 52(2):128-37. PubMed ID: 16781848 [TBL] [Abstract][Full Text] [Related]
15. Antiadherent and antibacterial properties of stainless steel and NiTi orthodontic wires coated with silver against Lactobacillus acidophilus--an in vitro study. Mhaske AR; Shetty PC; Bhat NS; Ramachandra CS; Laxmikanth SM; Nagarahalli K; Tekale PD Prog Orthod; 2015; 16():40. PubMed ID: 26576557 [TBL] [Abstract][Full Text] [Related]
16. Adhesion of Pseudomonas fluorescens biofilms to glass, stainless steel and cellulose. Wan Dagang WR; Bowen J; O'Keeffe J; Robbins PT; Zhang Z Biotechnol Lett; 2016 May; 38(5):787-92. PubMed ID: 26892223 [TBL] [Abstract][Full Text] [Related]
17. Hybrid Antifouling and Antimicrobial Coatings Prepared by Electroless Co-Deposition of Fluoropolymer and Cationic Silica Nanoparticles on Stainless Steel: Efficacy against Listeria monocytogenes. Huang K; Chen J; Nugen SR; Goddard JM ACS Appl Mater Interfaces; 2016 Jun; 8(25):15926-36. PubMed ID: 27268033 [TBL] [Abstract][Full Text] [Related]
18. The potential use of a layer-by-layer strategy to develop LDPE antimicrobial films coated with silver nanoparticles for packaging applications. Azlin-Hasim S; Cruz-Romero MC; Cummins E; Kerry JP; Morris MA J Colloid Interface Sci; 2016 Jan; 461():239-248. PubMed ID: 26402783 [TBL] [Abstract][Full Text] [Related]
19. Anti-adhesion and antibacterial activity of silver nanoparticles supported on graphene oxide sheets. de Faria AF; Martinez DS; Meira SM; de Moraes AC; Brandelli A; Filho AG; Alves OL Colloids Surf B Biointerfaces; 2014 Jan; 113():115-24. PubMed ID: 24060936 [TBL] [Abstract][Full Text] [Related]
20. Towards long-lasting antibacterial stainless steel surfaces by combining double glow plasma silvering with active screen plasma nitriding. Dong Y; Li X; Tian L; Bell T; Sammons RL; Dong H Acta Biomater; 2011 Jan; 7(1):447-57. PubMed ID: 20727993 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]