These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

186 related articles for article (PubMed ID: 28930199)

  • 41. High-precision FLIM-FRET in fixed and living cells reveals heterogeneity in a simple CFP-YFP fusion protein.
    Millington M; Grindlay GJ; Altenbach K; Neely RK; Kolch W; Bencina M; Read ND; Jones AC; Dryden DT; Magennis SW
    Biophys Chem; 2007 May; 127(3):155-64. PubMed ID: 17336446
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Characterization of Split Fluorescent Protein Variants and Quantitative Analyses of Their Self-Assembly Process.
    Köker T; Fernandez A; Pinaud F
    Sci Rep; 2018 Mar; 8(1):5344. PubMed ID: 29593344
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Rational design of enhanced photoresistance in a photoswitchable fluorescent protein.
    Duan C; Byrdin M; El Khatib M; Henry X; Adam V; Bourgeois D
    Methods Appl Fluoresc; 2015 Jan; 3(1):014004. PubMed ID: 29148481
    [TBL] [Abstract][Full Text] [Related]  

  • 44. A flow cytometric method to detect protein-protein interaction in living cells by directly visualizing donor fluorophore quenching during CFP-->YFP fluorescence resonance energy transfer (FRET).
    He L; Olson DP; Wu X; Karpova TS; McNally JG; Lipsky PE
    Cytometry A; 2003 Oct; 55(2):71-85. PubMed ID: 14505312
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Unraveling protein-protein interactions in living cells with fluorescence fluctuation brightness analysis.
    Chen Y; Wei LN; Müller JD
    Biophys J; 2005 Jun; 88(6):4366-77. PubMed ID: 15805168
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Wide-field subdiffraction RESOLFT microscopy using fluorescent protein photoswitching.
    Schwentker MA; Bock H; Hofmann M; Jakobs S; Bewersdorf J; Eggeling C; Hell SW
    Microsc Res Tech; 2007 Mar; 70(3):269-80. PubMed ID: 17262791
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Structural basis for reversible photoswitching in Dronpa.
    Andresen M; Stiel AC; Trowitzsch S; Weber G; Eggeling C; Wahl MC; Hell SW; Jakobs S
    Proc Natl Acad Sci U S A; 2007 Aug; 104(32):13005-9. PubMed ID: 17646653
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Rational design of ultrastable and reversibly photoswitchable fluorescent proteins for super-resolution imaging of the bacterial periplasm.
    El Khatib M; Martins A; Bourgeois D; Colletier JP; Adam V
    Sci Rep; 2016 Jan; 6():18459. PubMed ID: 26732634
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Photoinduced millisecond switching kinetics in the GFPMut2 E222Q mutant.
    Quercioli V; Bosisio C; Daglio SC; Rocca F; D'Alfonso L; Collini M; Baldini G; Chirico G; Bettati S; Raboni S; Campanini B
    J Phys Chem B; 2010 Apr; 114(13):4664-77. PubMed ID: 20230008
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Reversible photoswitchable DRONPA-s monitors nucleocytoplasmic transport of an RNA-binding protein in transgenic plants.
    Lummer M; Humpert F; Steuwe C; Caesar K; Schüttpelz M; Sauer M; Staiger D
    Traffic; 2011 Jun; 12(6):693-702. PubMed ID: 21453442
    [TBL] [Abstract][Full Text] [Related]  

  • 51. GMars-Q Enables Long-Term Live-Cell Parallelized Reversible Saturable Optical Fluorescence Transitions Nanoscopy.
    Wang S; Chen X; Chang L; Xue R; Duan H; Sun Y
    ACS Nano; 2016 Oct; 10(10):9136-9144. PubMed ID: 27541837
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Mechanisms of protein trafficking. Two different signal sequences fused to green fluorescent protein to study mitochondrial import.
    Weiner H
    Methods Mol Biol; 2002; 183():171-80. PubMed ID: 12136752
    [No Abstract]   [Full Text] [Related]  

  • 53. Fast and reversible photoswitching of the fluorescent protein dronpa as evidenced by fluorescence correlation spectroscopy.
    Dedecker P; Hotta J; Ando R; Miyawaki A; Engelborghs Y; Hofkens J
    Biophys J; 2006 Sep; 91(5):L45-7. PubMed ID: 16798811
    [TBL] [Abstract][Full Text] [Related]  

  • 54. ReAsH as a Quantitative Probe of In-Cell Protein Dynamics.
    Gelman H; Wirth AJ; Gruebele M
    Biochemistry; 2016 Apr; 55(13):1968-76. PubMed ID: 26959408
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Fluorescent and luminescent fusion proteins for analyses of amyloid beta peptide aggregation.
    Usui K; Mie M; Andou T; Mihara H; Kobatake E
    J Pept Sci; 2017 Jul; 23(7-8):659-665. PubMed ID: 28378376
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Autofluorescent proteins.
    Dobbie IM; Lowndes NF; Sullivan KF
    Methods Cell Biol; 2008; 85():1-22. PubMed ID: 18155456
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Structural evidence for a two-regime photobleaching mechanism in a reversibly switchable fluorescent protein.
    Duan C; Adam V; Byrdin M; Ridard J; Kieffer-Jaquinod S; Morlot C; Arcizet D; Demachy I; Bourgeois D
    J Am Chem Soc; 2013 Oct; 135(42):15841-50. PubMed ID: 24059326
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Lighting Up Live Cells with Smart Genetically Encoded Fluorescence Probes from GMars Family.
    Wang S; Shuai Y; Sun C; Xue B; Hou Y; Su X; Sun Y
    ACS Sens; 2018 Nov; 3(11):2269-2277. PubMed ID: 30346738
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Development and use of fluorescent protein markers in living cells.
    Lippincott-Schwartz J; Patterson GH
    Science; 2003 Apr; 300(5616):87-91. PubMed ID: 12677058
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Dual-colour fluorescence microscopy using yEmCherry-/GFP-tagging of eisosome components Pil1 and Lsp1 in Candida albicans.
    Reijnst P; Walther A; Wendland J
    Yeast; 2011 Apr; 28(4):331-8. PubMed ID: 21312263
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.