These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

103 related articles for article (PubMed ID: 28930428)

  • 1. Ion Transport in Confined Geometries below the Nanoscale: Access Resistance Dominates Protein Channel Conductance in Diluted Solutions.
    Alcaraz A; López ML; Queralt-Martín M; Aguilella VM
    ACS Nano; 2017 Oct; 11(10):10392-10400. PubMed ID: 28930428
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Access resistance in protein nanopores. A structure-based computational approach.
    Aguilella-Arzo M; Aguilella VM
    Bioelectrochemistry; 2020 Feb; 131():107371. PubMed ID: 31513986
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Divalent Metal Ion Transport across Large Biological Ion Channels and Their Effect on Conductance and Selectivity.
    García-Giménez E; Alcaraz A; Aguilella VM
    Biochem Res Int; 2012; 2012():245786. PubMed ID: 23008773
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Variational approach for electrolyte solutions: from dielectric interfaces to charged nanopores.
    Buyukdagli S; Manghi M; Palmeri J
    Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Apr; 81(4 Pt 1):041601. PubMed ID: 20481729
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Residue ionization and ion transport through OmpF channels.
    Nestorovich EM; Rostovtseva TK; Bezrukov SM
    Biophys J; 2003 Dec; 85(6):3718-29. PubMed ID: 14645063
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Ion-channels: goals for function-oriented synthesis.
    Reiß P; Koert U
    Acc Chem Res; 2013 Dec; 46(12):2773-80. PubMed ID: 23651489
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effects of extreme pH on ionic transport through protein nanopores: the role of ion diffusion and charge exclusion.
    Queralt-Martín M; Peiró-González C; Aguilella-Arzo M; Alcaraz A
    Phys Chem Chem Phys; 2016 Aug; 18(31):21668-75. PubMed ID: 27464527
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Asymmetric ion transport through ion-channel-mimetic solid-state nanopores.
    Guo W; Tian Y; Jiang L
    Acc Chem Res; 2013 Dec; 46(12):2834-46. PubMed ID: 23713693
    [TBL] [Abstract][Full Text] [Related]  

  • 9. X-ray crystallographic and mass spectrometric structure determination and functional characterization of succinylated porin from Rhodobacter capsulatus: implications for ion selectivity and single-channel conductance.
    Przybylski M; Glocker MO; Nestel U; Schnaible V; Blüggel M; Diederichs K; Weckesser J; Schad M; Schmid A; Welte W; Benz R
    Protein Sci; 1996 Aug; 5(8):1477-89. PubMed ID: 8844839
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Computing numerically the access resistance of a pore.
    Aguilella-Arzo M; Aguilella VM; Eisenberg RS
    Eur Biophys J; 2005 Jun; 34(4):314-22. PubMed ID: 15756588
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Conductance and ion selectivity of a mesoscopic protein nanopore probed with cysteine scanning mutagenesis.
    Merzlyak PG; Capistrano MF; Valeva A; Kasianowicz JJ; Krasilnikov OV
    Biophys J; 2005 Nov; 89(5):3059-70. PubMed ID: 16085767
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Proton conduction in gramicidin A and in its dioxolane-linked dimer in different lipid bilayers.
    Cukierman S; Quigley EP; Crumrine DS
    Biophys J; 1997 Nov; 73(5):2489-502. PubMed ID: 9370442
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Asymmetric electrostatic effects on the gating of rat brain sodium channels in planar lipid membranes.
    Cukierman S
    Biophys J; 1991 Oct; 60(4):845-55. PubMed ID: 1660316
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Ions and counterions in a biological channel: a molecular dynamics simulation of OmpF porin from Escherichia coli in an explicit membrane with 1 M KCl aqueous salt solution.
    Im W; Roux B
    J Mol Biol; 2002 Jun; 319(5):1177-97. PubMed ID: 12079356
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Selectivity of Protein Ion Channels and the Role of Buried Charges. Analytical Solutions, Numerical Calculations, and MD Simulations.
    García-Giménez E; Alcaraz A; Aguilella-Arzo M; Aguilella VM
    J Phys Chem B; 2015 Jul; 119(27):8475-9. PubMed ID: 26091047
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Access resistance of a single conducting membrane channel.
    Levadny V; Aguilella VM; Belaya M
    Biochim Biophys Acta; 1998 Jan; 1368(2):338-42. PubMed ID: 9459610
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Study of ionic currents across a model membrane channel using Brownian dynamics.
    Chung SH; Hoyles M; Allen T; Kuyucak S
    Biophys J; 1998 Aug; 75(2):793-809. PubMed ID: 9675181
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Linearity, saturation and blocking in a large multiionic channel: divalent cation modulation of the OmpF porin conductance.
    García-Giménez E; López ML; Aguilella VM; Alcaraz A
    Biochem Biophys Res Commun; 2011 Jan; 404(1):330-4. PubMed ID: 21134352
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Anomalous Proton Transport across Silica Nanochannel Membranes Investigated by Ion Conductance Measurements.
    Zhao M; Liu Y; Su B
    Anal Chem; 2019 Nov; 91(21):13433-13438. PubMed ID: 31571483
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Relation between ionic channel conductance and conductivity of media containing different nonelectrolytes. A novel method of pore size determination.
    Sabirov RZ; Krasilnikov OV; Ternovsky VI; Merzliak PG
    Gen Physiol Biophys; 1993 Apr; 12(2):95-111. PubMed ID: 7691679
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.