BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

114 related articles for article (PubMed ID: 28930439)

  • 1. Controlled Synthesis of MOF-Encapsulated NiPt Nanoparticles toward Efficient and Complete Hydrogen Evolution from Hydrazine Borane and Hydrazine.
    Zhang Z; Zhang S; Yao Q; Chen X; Lu ZH
    Inorg Chem; 2017 Oct; 56(19):11938-11945. PubMed ID: 28930439
    [TBL] [Abstract][Full Text] [Related]  

  • 2. NiPt Nanoparticles Anchored onto Hierarchical Nanoporous N-Doped Carbon as an Efficient Catalyst for Hydrogen Generation from Hydrazine Monohydrate.
    Qiu YP; Shi Q; Zhou LL; Chen MH; Chen C; Tang PP; Walker GS; Wang P
    ACS Appl Mater Interfaces; 2020 Apr; 12(16):18617-18624. PubMed ID: 32223189
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Immobilization of ultrafine bimetallic Ni-Pt nanoparticles inside the pores of metal-organic frameworks as efficient catalysts for dehydrogenation of alkaline solution of hydrazine.
    Cao N; Yang L; Dai H; Liu T; Su J; Wu X; Luo W; Cheng G
    Inorg Chem; 2014 Oct; 53(19):10122-8. PubMed ID: 25197778
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Ni-Pt nanoparticles growing on metal organic frameworks (MIL-96) with enhanced catalytic activity for hydrogen generation from hydrazine at room temperature.
    Wen L; Du X; Su J; Luo W; Cai P; Cheng G
    Dalton Trans; 2015 Apr; 44(13):6212-8. PubMed ID: 25737162
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Graphene-supported nickel-platinum nanoparticles as efficient catalyst for hydrogen generation from hydrous hydrazine at room temperature.
    Du Y; Su J; Luo W; Cheng G
    ACS Appl Mater Interfaces; 2015 Jan; 7(2):1031-4. PubMed ID: 25559434
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Complete Dehydrogenation of Hydrazine Borane on Manganese Oxide Nanorod-Supported Ni@Ir Core-Shell Nanoparticles.
    Yurderi M; Top T; Bulut A; Kanberoglu GS; Kaya M; Zahmakiran M
    Inorg Chem; 2020 Jul; 59(14):9728-9738. PubMed ID: 32589025
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Ruthenium nanoparticles confined in SBA-15 as highly efficient catalyst for hydrolytic dehydrogenation of ammonia borane and hydrazine borane.
    Yao Q; Lu ZH; Yang K; Chen X; Zhu M
    Sci Rep; 2015 Oct; 5():15186. PubMed ID: 26471355
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Noble-Metal-Free Ni-W-O-Derived Catalysts for High-Capacity Hydrogen Production from Hydrazine Monohydrate.
    Shi Q; Zhang DX; Yin H; Qiu YP; Zhou LL; Chen C; Wu H; Wang P
    ACS Sustain Chem Eng; 2020; 8(14):. PubMed ID: 33654580
    [TBL] [Abstract][Full Text] [Related]  

  • 9. One-pot synthesis of core-shell Cu@SiO2 nanospheres and their catalysis for hydrolytic dehydrogenation of ammonia borane and hydrazine borane.
    Yao Q; Lu ZH; Zhang Z; Chen X; Lan Y
    Sci Rep; 2014 Dec; 4():7597. PubMed ID: 25534772
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Tiny Pd@Co core-shell nanoparticles confined inside a metal-organic framework for highly efficient catalysis.
    Chen YZ; Xu Q; Yu SH; Jiang HL
    Small; 2015 Jan; 11(1):71-6. PubMed ID: 25201445
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Hydrazine borane-induced destabilization of ammonia borane, and vice versa.
    Petit JF; Moussa G; Demirci UB; Toche F; Chiriac R; Miele P
    J Hazard Mater; 2014 Aug; 278():158-62. PubMed ID: 24956580
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ex situ synthesis and characterization of a polymer-carbon nanotube-based hybrid nanocatalyst with one of the highest catalytic activities and stabilities for the hydrolytic dehydrogenation of hydrazine-borane at room temperature conditions.
    Demirkan B; Kuyuldar E; Karataş Y; Gülcan M; Sen F
    J Colloid Interface Sci; 2019 Sep; 552():432-438. PubMed ID: 31152963
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Encapsulating Pt Nanoparticles through Transforming Fe
    Chen X; Zhang Y; Zhao Y; Wang S; Liu L; Xu W; Guo Z; Wang S; Liu Y; Zhang J
    Inorg Chem; 2019 Sep; 58(18):12433-12440. PubMed ID: 31522504
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Study on High Activity and Outstanding Stability of Hollow-NiPt@SiO
    Wang G; Liang Y; Song J; Li H; Zhao Y
    Front Chem; 2020; 8():220. PubMed ID: 32391311
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Graphene-Supported Trimetallic Core-Shell Cu@CoNi Nanoparticles for Catalytic Hydrolysis of Amine Borane.
    Meng X; Yang L; Cao N; Du C; Hu K; Su J; Luo W; Cheng G
    Chempluschem; 2014 Feb; 79(2):325-332. PubMed ID: 31986590
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Aqueous solution synthesis of Pt-M (M = Fe, Co, Ni) bimetallic nanoparticles and their catalysis for the hydrolytic dehydrogenation of ammonia borane.
    Wang S; Zhang D; Ma Y; Zhang H; Gao J; Nie Y; Sun X
    ACS Appl Mater Interfaces; 2014 Aug; 6(15):12429-35. PubMed ID: 25058566
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Synthesis of Ni-Ru alloy nanoparticles and their high catalytic activity in dehydrogenation of ammonia borane.
    Chen G; Desinan S; Rosei R; Rosei F; Ma D
    Chemistry; 2012 Jun; 18(25):7925-30. PubMed ID: 22539444
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Nanosizing Approach-A Case Study on the Thermal Decomposition of Hydrazine Borane.
    Abu Osman NA; Nordin NI; Tan KC; Hosri NAHA; Pei Q; Ng EP; Othman MBH; Ismail M; He T; Chua YS
    Materials (Basel); 2023 Jan; 16(2):. PubMed ID: 36676604
    [TBL] [Abstract][Full Text] [Related]  

  • 19. 2D NiFe/CeO
    Wu D; Wen M; Gu C; Wu Q
    ACS Appl Mater Interfaces; 2017 May; 9(19):16103-16108. PubMed ID: 28474876
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mesoporous Face-Centered-Cubic In4Ni Alloy Nanorices: Superior Catalysts for Hydrazine Dehydrogenation in Aqueous Solution.
    Miao X; Chen MM; Chu W; Wu P; Tong DG
    ACS Appl Mater Interfaces; 2016 Sep; 8(38):25268-78. PubMed ID: 27599086
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.