These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
141 related articles for article (PubMed ID: 28930453)
21. Reductive half-reaction of aldehyde oxidoreductase toward acetaldehyde: Ab initio and free energy quantum mechanical/molecular mechanical calculations. Dieterich JM; Werner HJ; Mata RA; Metz S; Thiel W J Chem Phys; 2010 Jan; 132(3):035101. PubMed ID: 20095751 [TBL] [Abstract][Full Text] [Related]
22. Kinetic isotope effects for concerted multiple proton transfer: a direct dynamics study of an active-site model of carbonic anhydrase II. Smedarchina Z; Siebrand W; Fernández-Ramos A; Cui Q J Am Chem Soc; 2003 Jan; 125(1):243-51. PubMed ID: 12515527 [TBL] [Abstract][Full Text] [Related]
23. Multidimensional Free Energy and Accelerated Quantum Library Methods Provide a Gateway to Glycoenzyme Conformational, Electronic, and Reaction Mechanisms. Naidoo KJ; Bruce-Chwatt T; Senapathi T; Hillebrand M Acc Chem Res; 2021 Nov; 54(22):4120-4130. PubMed ID: 34726899 [TBL] [Abstract][Full Text] [Related]
24. Quantifying free energy profiles of proton transfer reactions in solution and proteins by using a diabatic FDFT mapping. Xiang Y; Warshel A J Phys Chem B; 2008 Jan; 112(3):1007-15. PubMed ID: 18166038 [TBL] [Abstract][Full Text] [Related]
25. Quantum mechanics/molecular mechanics minimum free-energy path for accurate reaction energetics in solution and enzymes: sequential sampling and optimization on the potential of mean force surface. Hu H; Lu Z; Parks JM; Burger SK; Yang W J Chem Phys; 2008 Jan; 128(3):034105. PubMed ID: 18205486 [TBL] [Abstract][Full Text] [Related]
26. Transition state stabilization and substrate strain in enzyme catalysis: ab initio QM/MM modelling of the chorismate mutase reaction. Ranaghan KE; Ridder L; Szefczyk B; Sokalski WA; Hermann JC; Mulholland AJ Org Biomol Chem; 2004 Apr; 2(7):968-80. PubMed ID: 15034619 [TBL] [Abstract][Full Text] [Related]
27. Mechanism of proteolysis in matrix metalloproteinase-2 revealed by QM/MM modeling. Vasilevskaya T; Khrenova MG; Nemukhin AV; Thiel W J Comput Chem; 2015 Aug; 36(21):1621-30. PubMed ID: 26132652 [TBL] [Abstract][Full Text] [Related]
28. Rapid Convergence of Energy and Free Energy Profiles with Quantum Mechanical Size in Quantum Mechanical-Molecular Mechanical Simulations of Proton Transfer in DNA. Das S; Nam K; Major DT J Chem Theory Comput; 2018 Mar; 14(3):1695-1705. PubMed ID: 29446946 [TBL] [Abstract][Full Text] [Related]
29. Reaction mechanism of lysyl oxidase-like 2 (LOXL2) studied by computational methods. Dong G; Lin LR; Xu LY; Li EM J Inorg Biochem; 2020 Oct; 211():111204. PubMed ID: 32801097 [TBL] [Abstract][Full Text] [Related]
30. Reaction path potential for complex systems derived from combined ab initio quantum mechanical and molecular mechanical calculations. Lu Z; Yang W J Chem Phys; 2004 Jul; 121(1):89-100. PubMed ID: 15260525 [TBL] [Abstract][Full Text] [Related]
31. Assignment of the vibrational spectra of enzyme-bound tryptophan tryptophyl quinones using a combined QM/MM approach. Pang J; Scrutton NS; de Visser SP; Sutcliffe MJ J Phys Chem A; 2010 Jan; 114(2):1212-7. PubMed ID: 19950920 [TBL] [Abstract][Full Text] [Related]
32. Quantum Mechanics/Molecular Mechanics (QM/MM) Calculations Support a Concerted Reaction Mechanism for the Zika Virus NS2B/NS3 Serine Protease with Its Substrate. Nutho B; Mulholland AJ; Rungrotmongkol T J Phys Chem B; 2019 Apr; 123(13):2889-2903. PubMed ID: 30845796 [TBL] [Abstract][Full Text] [Related]
33. Barrier compression and its contribution to both classical and quantum mechanical aspects of enzyme catalysis. Hay S; Johannissen LO; Sutcliffe MJ; Scrutton NS Biophys J; 2010 Jan; 98(1):121-8. PubMed ID: 20085724 [TBL] [Abstract][Full Text] [Related]
34. Improving the Accuracy of Quantum Mechanics/Molecular Mechanics (QM/MM) Models with Polarized Fragment Charges. Chen J; Harper JB; Ho J J Chem Theory Comput; 2022 Sep; 18(9):5607-5617. PubMed ID: 35952004 [TBL] [Abstract][Full Text] [Related]
36. Spectroscopic evidence for a common electron transfer pathway for two tryptophan tryptophylquinone enzymes. Edwards SL; Davidson VL; Hyun YL; Wingfield PT J Biol Chem; 1995 Mar; 270(9):4293-8. PubMed ID: 7876189 [TBL] [Abstract][Full Text] [Related]
37. Unusually large isotope effect for the reaction of aromatic amine dehydrogenase. A common feature of quinoproteins? Hyun YL; Davidson VL Biochim Biophys Acta; 1995 Sep; 1251(2):198-200. PubMed ID: 7669810 [TBL] [Abstract][Full Text] [Related]
38. Vibrationally enhanced hydrogen tunneling in the Escherichia coli thymidylate synthase catalyzed reaction. Agrawal N; Hong B; Mihai C; Kohen A Biochemistry; 2004 Feb; 43(7):1998-2006. PubMed ID: 14967040 [TBL] [Abstract][Full Text] [Related]
39. Model Setup and Procedures for Prediction of Enzyme Reaction Kinetics with QM-Only and QM:MM Approaches. Glanowski M; Kachhap S; Borowski T; Szaleniec M Methods Mol Biol; 2022; 2385():175-236. PubMed ID: 34888722 [TBL] [Abstract][Full Text] [Related]
40. Isotope effects reveal that para-substituted benzylamines are poor reactivity probes of the quinoprotein mechanism for aromatic amine dehydrogenase. Hothi P; Roujeinikova A; Khadra KA; Lee M; Cullis P; Leys D; Scrutton NS Biochemistry; 2007 Aug; 46(32):9250-9. PubMed ID: 17636875 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]