These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

179 related articles for article (PubMed ID: 28930611)

  • 61. Improved lignocellulose conversion to biofuels with thermophilic bacteria and thermostable enzymes.
    Bhalla A; Bansal N; Kumar S; Bischoff KM; Sani RK
    Bioresour Technol; 2013 Jan; 128():751-9. PubMed ID: 23246299
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Bioethanol Production by Enzymatic Hydrolysis from Different Lignocellulosic Sources.
    Vasić K; Knez Ž; Leitgeb M
    Molecules; 2021 Feb; 26(3):. PubMed ID: 33535536
    [TBL] [Abstract][Full Text] [Related]  

  • 63. A review on bioconversion of lignocellulosic biomass to H2: Key challenges and new insights.
    Ren NQ; Zhao L; Chen C; Guo WQ; Cao GL
    Bioresour Technol; 2016 Sep; 215():92-99. PubMed ID: 27090403
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Genotype, development and tissue-derived variation of cell-wall properties in the lignocellulosic energy crop Miscanthus.
    da Costa RM; Lee SJ; Allison GG; Hazen SP; Winters A; Bosch M
    Ann Bot; 2014 Oct; 114(6):1265-77. PubMed ID: 24737720
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Fuel ethanol production from lignocellulose: a challenge for metabolic engineering and process integration.
    Zaldivar J; Nielsen J; Olsson L
    Appl Microbiol Biotechnol; 2001 Jul; 56(1-2):17-34. PubMed ID: 11499926
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Lignin Degradation Efficiency of Chemical Pre-Treatments on Banana Rachis Destined to Bioethanol Production.
    Costa S; Rugiero I; Larenas Uria C; Pedrini P; Tamburini E
    Biomolecules; 2018 Nov; 8(4):. PubMed ID: 30423995
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Biological pretreatment of lignocellulosic biomass--An overview.
    Sindhu R; Binod P; Pandey A
    Bioresour Technol; 2016 Jan; 199():76-82. PubMed ID: 26320388
    [TBL] [Abstract][Full Text] [Related]  

  • 68. A review on lignin structure, pretreatments, fermentation reactions and biorefinery potential.
    Ponnusamy VK; Nguyen DD; Dharmaraja J; Shobana S; Banu JR; Saratale RG; Chang SW; Kumar G
    Bioresour Technol; 2019 Jan; 271():462-472. PubMed ID: 30270050
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Endowing non-cellulolytic microorganisms with cellulolytic activity aiming for consolidated bioprocessing.
    Yamada R; Hasunuma T; Kondo A
    Biotechnol Adv; 2013 Nov; 31(6):754-63. PubMed ID: 23473971
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Biotechnological strategies to overcome inhibitors in lignocellulose hydrolysates for ethanol production: review.
    Parawira W; Tekere M
    Crit Rev Biotechnol; 2011 Mar; 31(1):20-31. PubMed ID: 20513164
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Cellulosic ethanol production: Progress, challenges and strategies for solutions.
    Liu CG; Xiao Y; Xia XX; Zhao XQ; Peng L; Srinophakun P; Bai FW
    Biotechnol Adv; 2019; 37(3):491-504. PubMed ID: 30849432
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Enhanced biomass delignification and enzymatic saccharification of canola straw by steam-explosion pretreatment.
    Garmakhany AD; Kashaninejad M; Aalami M; Maghsoudlou Y; Khomieri M; Tabil LG
    J Sci Food Agric; 2014 Jun; 94(8):1607-13. PubMed ID: 24186725
    [TBL] [Abstract][Full Text] [Related]  

  • 73. An update on enzymatic cocktails for lignocellulose breakdown.
    Lopes AM; Ferreira Filho EX; Moreira LRS
    J Appl Microbiol; 2018 Sep; 125(3):632-645. PubMed ID: 29786939
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Release of cell wall phenolic esters during hydrothermal pretreatment of rice husk and rice straw.
    Wu J; Collins SRA; Elliston A; Wellner N; Dicks J; Roberts IN; Waldron KW
    Biotechnol Biofuels; 2018; 11():162. PubMed ID: 29991964
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Commercial feasibility of lignocellulose biodegradation: possibilities and challenges.
    Taha M; Foda M; Shahsavari E; Aburto-Medina A; Adetutu E; Ball A
    Curr Opin Biotechnol; 2016 Apr; 38():190-7. PubMed ID: 27011055
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Lignin modification improves fermentable sugar yields for biofuel production.
    Chen F; Dixon RA
    Nat Biotechnol; 2007 Jul; 25(7):759-61. PubMed ID: 17572667
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Liquid hot water pretreatment of lignocellulosic biomass for bioethanol production accompanying with high valuable products.
    Zhuang X; Wang W; Yu Q; Qi W; Wang Q; Tan X; Zhou G; Yuan Z
    Bioresour Technol; 2016 Jan; 199():68-75. PubMed ID: 26403722
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Advances and developments in strategies to improve strains of Saccharomyces cerevisiae and processes to obtain the lignocellulosic ethanol--a review.
    Laluce C; Schenberg AC; Gallardo JC; Coradello LF; Pombeiro-Sponchiado SR
    Appl Biochem Biotechnol; 2012 Apr; 166(8):1908-26. PubMed ID: 22391693
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Cellulolytic enzyme production and enzymatic hydrolysis for second-generation bioethanol production.
    Wang M; Li Z; Fang X; Wang L; Qu Y
    Adv Biochem Eng Biotechnol; 2012; 128():1-24. PubMed ID: 22231654
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Overcoming factors limiting high-solids fermentation of lignocellulosic biomass to ethanol.
    Nguyen TY; Cai CM; Kumar R; Wyman CE
    Proc Natl Acad Sci U S A; 2017 Oct; 114(44):11673-11678. PubMed ID: 29078278
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.