These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
357 related articles for article (PubMed ID: 28930649)
1. pH multistage responsive micellar system with charge-switch and PEG layer detachment for co-delivery of paclitaxel and curcumin to synergistically eliminate breast cancer stem cells. Yang Z; Sun N; Cheng R; Zhao C; Liu Z; Li X; Liu J; Tian Z Biomaterials; 2017 Dec; 147():53-67. PubMed ID: 28930649 [TBL] [Abstract][Full Text] [Related]
2. The anti-tumor efficacy of curcumin when delivered by size/charge-changing multistage polymeric micelles based on amphiphilic poly(β-amino ester) derivates. Yu Y; Zhang X; Qiu L Biomaterials; 2014 Mar; 35(10):3467-79. PubMed ID: 24439418 [TBL] [Abstract][Full Text] [Related]
3. Design of pH-sensitive methotrexate prodrug-targeted curcumin nanoparticles for efficient dual-drug delivery and combination cancer therapy. Xie J; Fan Z; Li Y; Zhang Y; Yu F; Su G; Xie L; Hou Z Int J Nanomedicine; 2018; 13():1381-1398. PubMed ID: 29563794 [TBL] [Abstract][Full Text] [Related]
5. Synthesis and evaluation of a paclitaxel-binding polymeric micelle for efficient breast cancer therapy. Xiang J; Wu B; Zhou Z; Hu S; Piao Y; Zhou Q; Wang G; Tang J; Liu X; Shen Y Sci China Life Sci; 2018 Apr; 61(4):436-447. PubMed ID: 29572777 [TBL] [Abstract][Full Text] [Related]
6. pH-sensitive polymeric nanoparticles of mPEG-PLGA-PGlu with hybrid core for simultaneous encapsulation of curcumin and doxorubicin to kill the heterogeneous tumour cells in breast cancer. Yuan JD; ZhuGe DL; Tong MQ; Lin MT; Xu XF; Tang X; Zhao YZ; Xu HL Artif Cells Nanomed Biotechnol; 2018; 46(sup1):302-313. PubMed ID: 29301415 [TBL] [Abstract][Full Text] [Related]
7. Cargo-Free Nanomedicine with pH Sensitivity for Codelivery of DOX Conjugated Prodrug with SN38 To Synergistically Eradicate Breast Cancer Stem Cells. Sun N; Zhao C; Cheng R; Liu Z; Li X; Lu A; Tian Z; Yang Z Mol Pharm; 2018 Aug; 15(8):3343-3355. PubMed ID: 29923726 [TBL] [Abstract][Full Text] [Related]
8. Smart polymeric nanoparticles with pH-responsive and PEG-detachable properties for co-delivering paclitaxel and survivin siRNA to enhance antitumor outcomes. Jin M; Jin G; Kang L; Chen L; Gao Z; Huang W Int J Nanomedicine; 2018; 13():2405-2426. PubMed ID: 29719390 [TBL] [Abstract][Full Text] [Related]
9. Characteristics and cytotoxicity of folate-modified curcumin-loaded PLA-PEG micellar nano systems with various PLA:PEG ratios. Phan QT; Le MH; Le TT; Tran TH; Xuan PN; Ha PT Int J Pharm; 2016 Jun; 507(1-2):32-40. PubMed ID: 27150945 [TBL] [Abstract][Full Text] [Related]
10. Dual thermoresponsive and pH-responsive self-assembled micellar nanogel for anticancer drug delivery. Chen D; Yu H; Sun K; Liu W; Wang H Drug Deliv; 2014 Jun; 21(4):258-64. PubMed ID: 24102086 [TBL] [Abstract][Full Text] [Related]
11. Exogenous vitamin C boosts the antitumor efficacy of paclitaxel containing reduction-sensitive shell-sheddable micelles in vivo. Zhu Y; Wang X; Zhang J; Meng F; Deng C; Cheng R; Feijen J; Zhong Z J Control Release; 2017 Mar; 250():9-19. PubMed ID: 28163212 [TBL] [Abstract][Full Text] [Related]
12. Reprogramming Cancer Stem-like Cells with Nanoforskolin Enhances the Efficacy of Paclitaxel in Targeting Breast Cancer. Singh D; Singh P; Pradhan A; Srivastava R; Sahoo SK ACS Appl Bio Mater; 2021 Apr; 4(4):3670-3685. PubMed ID: 35014452 [TBL] [Abstract][Full Text] [Related]
13. PEG-derivatized octacosanol as micellar carrier for paclitaxel delivery. Chu B; Qu Y; Huang Y; Zhang L; Chen X; Long C; He Y; Ou C; Qian Z Int J Pharm; 2016 Mar; 500(1-2):345-59. PubMed ID: 26794876 [TBL] [Abstract][Full Text] [Related]
14. pH and redox dual-responsive copolymer micelles with surface charge reversal for co-delivery of all- Zhang Y; Peng L; Chu J; Zhang M; Sun L; Zhong B; Wu Q Int J Nanomedicine; 2018; 13():6499-6515. PubMed ID: 30410335 [TBL] [Abstract][Full Text] [Related]
15. Dehydroascorbic Acid and pGPMA Dual Modified pH-Sensitive Polymeric Micelles for Target Treatment of Liver Cancer. Ma H; Jiang C J Pharm Sci; 2018 Feb; 107(2):595-603. PubMed ID: 29024701 [TBL] [Abstract][Full Text] [Related]
16. Nanomedicine-based paclitaxel induced apoptotic signaling pathways in A562 leukemia cancer cells. Wang Y; Zhou L; Xiao M; Sun ZL; Zhang CY Colloids Surf B Biointerfaces; 2017 Jan; 149():16-22. PubMed ID: 27716527 [TBL] [Abstract][Full Text] [Related]
17. On-demand combinational delivery of curcumin and doxorubicin via a pH-labile micellar nanocarrier. Li H; Li M; Chen C; Fan A; Kong D; Wang Z; Zhao Y Int J Pharm; 2015 Nov; 495(1):572-578. PubMed ID: 26387617 [TBL] [Abstract][Full Text] [Related]
18. [Preparation, characterization and Calu-3 cellular uptake of three kinds of poly(b-benzyl-L-amino)block-poly(ethylene glycol) nanoparticles]. Zhou Y; Lu LN; Xin X; Huo DF; Wu HB; Qiu MF Yao Xue Xue Bao; 2013 Apr; 48(4):560-5. PubMed ID: 23833946 [TBL] [Abstract][Full Text] [Related]
19. pH-Responsive Poly(Ethylene Glycol)-block-Polylactide Micelles for Tumor-Targeted Drug Delivery. Xiao L; Huang L; Moingeon F; Gauthier M; Yang G Biomacromolecules; 2017 Sep; 18(9):2711-2722. PubMed ID: 28774173 [TBL] [Abstract][Full Text] [Related]
20. Poly(ethylene glycol)-block-poly(ε-caprolactone)-and phospholipid-based stealth nanoparticles with enhanced therapeutic efficacy on murine breast cancer by improved intracellular drug delivery. He X; Li L; Su H; Zhou D; Song H; Wang L; Jiang X Int J Nanomedicine; 2015; 10():1791-804. PubMed ID: 25784805 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]