These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

156 related articles for article (PubMed ID: 28930666)

  • 1. Effects of copyrolysis of sludge with calcium carbonate and calcium hydrogen phosphate on chemical stability of carbon and release of toxic elements in the resultant biochars.
    Xu X; Hu X; Ding Z; Chen Y
    Chemosphere; 2017 Dec; 189():76-85. PubMed ID: 28930666
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effects of mineral additives on biochar formation: carbon retention, stability, and properties.
    Li F; Cao X; Zhao L; Wang J; Ding Z
    Environ Sci Technol; 2014 Oct; 48(19):11211-7. PubMed ID: 25203840
    [TBL] [Abstract][Full Text] [Related]  

  • 3. [Amelioration effects of wastewater sludge biochars on red soil acidity and their environmental risk].
    Lu ZL; Li JY; Jiang J; Xu RK
    Huan Jing Ke Xue; 2012 Oct; 33(10):3585-91. PubMed ID: 23233992
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Release of soluble elements from biochars derived from various biomass feedstocks.
    Wu H; Che X; Ding Z; Hu X; Creamer AE; Chen H; Gao B
    Environ Sci Pollut Res Int; 2016 Jan; 23(2):1905-15. PubMed ID: 26408115
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Feasibility of sludge-based biochar for soil remediation: Characteristics and safety performance of heavy metals influenced by pyrolysis temperatures.
    Xing J; Li L; Li G; Xu G
    Ecotoxicol Environ Saf; 2019 Sep; 180():457-465. PubMed ID: 31121552
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Application of biochar from sewage sludge to plant cultivation: Influence of pyrolysis temperature and biochar-to-soil ratio on yield and heavy metal accumulation.
    Song XD; Xue XY; Chen DZ; He PJ; Dai XH
    Chemosphere; 2014 Aug; 109():213-20. PubMed ID: 24582602
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Co-pyrolysis of sewage sludge and metal-free/metal-loaded polyvinyl chloride (PVC) microplastics improved biochar properties and reduced environmental risk of heavy metals.
    Li W; Meng J; Zhang Y; Haider G; Ge T; Zhang H; Li Z; Yu Y; Shan S
    Environ Pollut; 2022 Jun; 302():119092. PubMed ID: 35245620
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effect of calcium dihydrogen phosphate addition on carbon retention and stability of biochars derived from cellulose, hemicellulose, and lignin.
    Li F; Gui X; Ji W; Zhou C
    Chemosphere; 2020 Jul; 251():126335. PubMed ID: 32145573
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effect of pyrolysis temperature on chemical and physical properties of sewage sludge biochar.
    Khanmohammadi Z; Afyuni M; Mosaddeghi MR
    Waste Manag Res; 2015 Mar; 33(3):275-83. PubMed ID: 25595292
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Comparison of pyrolysis process, various fractions and potential soil applications between sewage sludge-based biochars and lignocellulose-based biochars.
    Xing J; Xu G; Li G
    Ecotoxicol Environ Saf; 2021 Jan; 208():111756. PubMed ID: 33396079
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Immobilization effect of heavy metals in biochar via the copyrolysis of sewage sludge and apple branches.
    Jiang FZ; Hao HC; Hu ZY; Chen S; Li ZY
    J Environ Manage; 2023 Mar; 329():117073. PubMed ID: 36549065
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Analysis of the complexation behaviors of Cu(II) with DOM from sludge-based biochars and agricultural soil: Effect of pyrolysis temperature.
    Xing J; Xu G; Li G
    Chemosphere; 2020 Jul; 250():126184. PubMed ID: 32105854
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effect of pyrolysis temperature on characteristics, chemical speciation and environmental risk of Cr, Mn, Cu, and Zn in biochars derived from pig manure.
    Shen X; Zeng J; Zhang D; Wang F; Li Y; Yi W
    Sci Total Environ; 2020 Feb; 704():135283. PubMed ID: 31822406
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Sewage sludge biochars management-Ecotoxicity, mobility of heavy metals, and soil microbial biomass.
    Mierzwa-Hersztek M; Gondek K; Klimkowicz-Pawlas A; Baran A; Bajda T
    Environ Toxicol Chem; 2018 Apr; 37(4):1197-1207. PubMed ID: 29150956
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effect of pyrolysis temperature on characteristics, chemical speciation and risk evaluation of heavy metals in biochar derived from textile dyeing sludge.
    Wang X; Li C; Li Z; Yu G; Wang Y
    Ecotoxicol Environ Saf; 2019 Jan; 168():45-52. PubMed ID: 30384166
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Properties of biochars from conventional and alternative feedstocks and their suitability for metal immobilization in industrial soil.
    Gusiatin ZM; Kurkowski R; Brym S; Wiśniewski D
    Environ Sci Pollut Res Int; 2016 Nov; 23(21):21249-21261. PubMed ID: 27495921
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Characterization of contaminants and evaluation of the suitability for land application of maize and sludge biochars.
    Luo F; Song J; Xia W; Dong M; Chen M; Soudek P
    Environ Sci Pollut Res Int; 2014; 21(14):8707-17. PubMed ID: 24687793
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Stabilization of cationic and anionic metal species in contaminated soils using sludge-derived biochar.
    Fang S; Tsang DC; Zhou F; Zhang W; Qiu R
    Chemosphere; 2016 Apr; 149():263-71. PubMed ID: 26866964
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Co-pyrolysis of sewage sludge as additive with phytoremediation residue on the fate of heavy metals and the carbon sequestration potential of derived biochar.
    He T; Zhang M; Jin B
    Chemosphere; 2023 Feb; 314():137646. PubMed ID: 36581119
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Influence of pyrolysis temperature and feedstock on carbon fractions of biochar produced from pyrolysis of rice straw, pine wood, pig manure and sewage sludge.
    Wei S; Zhu M; Fan X; Song J; Peng P; Li K; Jia W; Song H
    Chemosphere; 2019 Mar; 218():624-631. PubMed ID: 30502701
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.