These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

170 related articles for article (PubMed ID: 28930991)

  • 21. A multi-trap microfluidic chip enabling longitudinal studies of nerve regeneration in Caenorhabditis elegans.
    Gokce SK; Hegarty EM; Mondal S; Zhao P; Ghorashian N; Hilliard MA; Ben-Yakar A
    Sci Rep; 2017 Aug; 7(1):9837. PubMed ID: 28852096
    [TBL] [Abstract][Full Text] [Related]  

  • 22. On-chip microfluidic biocommunication assay for studying male-induced demise in C. elegans hermaphrodites.
    Dong L; Cornaglia M; Lehnert T; Gijs MA
    Lab Chip; 2016 Nov; 16(23):4534-4545. PubMed ID: 27735953
    [TBL] [Abstract][Full Text] [Related]  

  • 23. A low-cost microfluidic platform coupled with light emitting diode for optogenetic analysis of neuronal response in C. elegans.
    Ge A; Hu L; Fan J; Ge M; Wang X; Wang S; Feng X; Du W; Liu BF
    Talanta; 2021 Feb; 223(Pt 1):121646. PubMed ID: 33303134
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Microfluidic Devices for Behavioral Analysis, Microscopy, and Neuronal Imaging in Caenorhabditis elegans.
    Lagoy RC; Albrecht DR
    Methods Mol Biol; 2015; 1327():159-79. PubMed ID: 26423974
    [TBL] [Abstract][Full Text] [Related]  

  • 25. An Automated Microfluidic System for Morphological Measurement and Size-Based Sorting of C. Elegans.
    Dong X; Song P; Liu X
    IEEE Trans Nanobioscience; 2019 Jul; 18(3):373-380. PubMed ID: 30869628
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Neural circuit-dependent odor adaptation in C. elegans is regulated by the Ras-MAPK pathway.
    Hirotsu T; Iino Y
    Genes Cells; 2005 Jun; 10(6):517-30. PubMed ID: 15938711
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Circuit mechanisms encoding odors and driving aging-associated behavioral declines in Caenorhabditis elegans.
    Leinwand SG; Yang CJ; Bazopoulou D; Chronis N; Srinivasan J; Chalasani SH
    Elife; 2015 Sep; 4():e10181. PubMed ID: 26394000
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Agarose Microchambers for Long-term Calcium Imaging of Caenorhabditis elegans.
    Turek M; Besseling J; Bringmann H
    J Vis Exp; 2015 Jun; (100):e52742. PubMed ID: 26132740
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Using a Microfluidics Device for Mechanical Stimulation and High Resolution Imaging of C. elegans.
    Fehlauer H; Nekimken AL; Kim AA; Pruitt BL; Goodman MB; Krieg M
    J Vis Exp; 2018 Feb; (132):. PubMed ID: 29553526
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Intracellular Ca2+ imaging in C. elegans.
    Kerr RA; Schafer WR
    Methods Mol Biol; 2006; 351():253-64. PubMed ID: 16988439
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Environment-specific modulation of odorant representations in the honeybee brain.
    Chakroborty NK; Menzel R; Schubert M
    Eur J Neurosci; 2016 Dec; 44(12):3080-3093. PubMed ID: 27748970
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Evidence for multiple calcium response mechanisms in mammalian olfactory receptor neurons.
    Gomez G; Lischka FW; Haskins ME; Rawson NE
    Chem Senses; 2005 May; 30(4):317-26. PubMed ID: 15800218
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Olfactory behavior of swimming C. elegans analyzed by measuring motile responses to temporal variations of odorants.
    Luo L; Gabel CV; Ha HI; Zhang Y; Samuel AD
    J Neurophysiol; 2008 May; 99(5):2617-25. PubMed ID: 18367700
    [TBL] [Abstract][Full Text] [Related]  

  • 34. A microfluidic device for efficient chemical testing using Caenorhabditis elegans.
    Song P; Zhang W; Sobolevski A; Bernard K; Hekimi S; Liu X
    Biomed Microdevices; 2015 Apr; 17(2):38. PubMed ID: 25744157
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Microfluidic-based imaging of complete Caenorhabditis elegans larval development.
    Berger S; Spiri S; deMello A; Hajnal A
    Development; 2021 Jul; 148(18):. PubMed ID: 34170296
    [TBL] [Abstract][Full Text] [Related]  

  • 36. The sensory circuitry for sexual attraction in C. elegans males.
    White JQ; Nicholas TJ; Gritton J; Truong L; Davidson ER; Jorgensen EM
    Curr Biol; 2007 Nov; 17(21):1847-57. PubMed ID: 17964166
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Off-response in ASH neurons evoked by CuSO4 requires the TRP channel OSM-9 in Caenorhabditis elegans.
    Wang W; Xu ZJ; Wu YQ; Qin LW; Li ZY; Wu ZX
    Biochem Biophys Res Commun; 2015 Jun; 461(3):463-8. PubMed ID: 25871795
    [TBL] [Abstract][Full Text] [Related]  

  • 38. A Light-Addressable Potentiometric Sensor for Odorant Detection Using Single Bioengineered Olfactory Sensory Neurons as Sensing Element.
    Wu C; Du L; Tian Y; Zhang X; Wang P
    Methods Mol Biol; 2017; 1572():233-246. PubMed ID: 28299692
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Continuous-flow C. elegans fluorescence expression analysis with real-time image processing through microfluidics.
    Yan Y; Boey D; Ng LT; Gruber J; Bettiol A; Thakor NV; Chen CH
    Biosens Bioelectron; 2016 Mar; 77():428-34. PubMed ID: 26452079
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Development of a method to quantitate nematode pheromone for study of small-molecule metabolism in Caenorhabditis elegans.
    Kim KY; Joo HJ; Kwon HW; Kim H; Hancock WS; Paik YK
    Anal Chem; 2013 Mar; 85(5):2681-8. PubMed ID: 23347231
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.