These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

170 related articles for article (PubMed ID: 28930991)

  • 41. Quantitative analysis of Caenorhabditis elegans chemotaxis using a microfluidic device.
    Hu L; Ye J; Tan H; Ge A; Tang L; Feng X; Du W; Liu BF
    Anal Chim Acta; 2015 Aug; 887():155-162. PubMed ID: 26320797
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Trapping the nematode on a micro chip for the future of science.
    Zhang JX
    HFSP J; 2007 Nov; 1(4):220-4. PubMed ID: 19404422
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Microfluidic Platform for Analyzing the Thermotaxis of C. elegans in a Linear Temperature Gradient.
    Yoon S; Piao H; Jeon TJ; Kim SM
    Anal Sci; 2017; 33(12):1435-1440. PubMed ID: 29225236
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Under Pressure: A Microfluidic Chip for Prolonged, Anesthetic-Free Imaging of Neuronal Mitostasis in
    Franco JA
    eNeuro; 2021; 8(5):. PubMed ID: 34475223
    [No Abstract]   [Full Text] [Related]  

  • 45. Microfluidic platform for the study of Caenorhabditis elegans.
    Shi W; Wen H; Lin B; Qin J
    Top Curr Chem; 2011; 304():323-38. PubMed ID: 21516386
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Chronic odorant exposure upregulates acquisition of functional properties in cultured embryonic chick olfactory sensory neurons.
    O'Neill G; Musto C; Gomez G
    J Neurosci Res; 2017 May; 95(5):1216-1224. PubMed ID: 27714890
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Probing the anti-aging role of polydatin in Caenorhabditis elegans on a chip.
    Wen H; Gao X; Qin J
    Integr Biol (Camb); 2014 Jan; 6(1):35-43. PubMed ID: 24305800
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Artificial dirt: microfluidic substrates for nematode neurobiology and behavior.
    Lockery SR; Lawton KJ; Doll JC; Faumont S; Coulthard SM; Thiele TR; Chronis N; McCormick KE; Goodman MB; Pruitt BL
    J Neurophysiol; 2008 Jun; 99(6):3136-43. PubMed ID: 18337372
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Bioengineered olfactory sensory neuron-based biosensor for specific odorant detection.
    Du L; Wu C; Peng H; Zhao L; Huang L; Wang P
    Biosens Bioelectron; 2013 Feb; 40(1):401-6. PubMed ID: 23036770
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Microfluidic Devices for Behavioral Analysis, Microscopy, and Neuronal Imaging in Caenorhabditis elegans.
    Lagoy RC; Larsen E; Lawler D; White H; Albrecht DR
    Methods Mol Biol; 2022; 2468():293-318. PubMed ID: 35320572
    [TBL] [Abstract][Full Text] [Related]  

  • 51. An automated microfluidic platform for calcium imaging of chemosensory neurons in Caenorhabditis elegans.
    Chokshi TV; Bazopoulou D; Chronis N
    Lab Chip; 2010 Oct; 10(20):2758-63. PubMed ID: 20820480
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Integration of CO2 and odorant signals in the mouse olfactory bulb.
    Gao L; Hu J; Zhong C; Luo M
    Neuroscience; 2010 Oct; 170(3):881-92. PubMed ID: 20696215
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Olfactory circuits and behaviors of nematodes.
    Rengarajan S; Hallem EA
    Curr Opin Neurobiol; 2016 Dec; 41():136-148. PubMed ID: 27668755
    [TBL] [Abstract][Full Text] [Related]  

  • 54. High-throughput imaging of neuronal activity in Caenorhabditis elegans.
    Larsch J; Ventimiglia D; Bargmann CI; Albrecht DR
    Proc Natl Acad Sci U S A; 2013 Nov; 110(45):E4266-73. PubMed ID: 24145415
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Voltage-dependent anion channel (VDAC-1) is required for olfactory sensing in Caenorhabditis elegans.
    Uozumi T; Hamakawa M; Deno YK; Nakajo N; Hirotsu T
    Genes Cells; 2015 Oct; 20(10):802-16. PubMed ID: 26223767
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Microfluidic chip-based C. elegans microinjection system for investigating cell-cell communication in vivo.
    Zhao X; Xu F; Tang L; Du W; Feng X; Liu BF
    Biosens Bioelectron; 2013 Dec; 50():28-34. PubMed ID: 23831644
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Trends in high-throughput and functional neuroimaging in Caenorhabditis elegans.
    Cho Y; Zhao CL; Lu H
    Wiley Interdiscip Rev Syst Biol Med; 2017 May; 9(3):. PubMed ID: 28221003
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Interactions of odorants with olfactory receptors and receptor neurons match the perceptual dynamics observed for woody and fruity odorant mixtures.
    Chaput MA; El Mountassir F; Atanasova B; Thomas-Danguin T; Le Bon AM; Perrut A; Ferry B; Duchamp-Viret P
    Eur J Neurosci; 2012 Feb; 35(4):584-97. PubMed ID: 22304504
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Droplet microfluidics for characterizing the neurotoxin-induced responses in individual Caenorhabditis elegans.
    Shi W; Wen H; Lu Y; Shi Y; Lin B; Qin J
    Lab Chip; 2010 Nov; 10(21):2855-63. PubMed ID: 20882233
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Microbial Rhodopsin Optogenetic Tools: Application for Analyses of Synaptic Transmission and of Neuronal Network Activity in Behavior.
    Glock C; Nagpal J; Gottschalk A
    Methods Mol Biol; 2015; 1327():87-103. PubMed ID: 26423970
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.