BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

1368 related articles for article (PubMed ID: 28931057)

  • 1. Challenges and advances for transcriptome assembly in non-model species.
    Ungaro A; Pech N; Martin JF; McCairns RJS; Mévy JP; Chappaz R; Gilles A
    PLoS One; 2017; 12(9):e0185020. PubMed ID: 28931057
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Comparative performance of transcriptome assembly methods for non-model organisms.
    Huang X; Chen XG; Armbruster PA
    BMC Genomics; 2016 Jul; 17():523. PubMed ID: 27464550
    [TBL] [Abstract][Full Text] [Related]  

  • 3. RNA-seq analysis of Quercus pubescens Leaves: de novo transcriptome assembly, annotation and functional markers development.
    Torre S; Tattini M; Brunetti C; Fineschi S; Fini A; Ferrini F; Sebastiani F
    PLoS One; 2014; 9(11):e112487. PubMed ID: 25393112
    [TBL] [Abstract][Full Text] [Related]  

  • 4. PARRoT- a homology-based strategy to quantify and compare RNA-sequencing from non-model organisms.
    Gan RC; Chen TW; Wu TH; Huang PJ; Lee CC; Yeh YM; Chiu CH; Huang HD; Tang P
    BMC Bioinformatics; 2016 Dec; 17(Suppl 19):513. PubMed ID: 28155708
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A survey of the complex transcriptome from the highly polyploid sugarcane genome using full-length isoform sequencing and de novo assembly from short read sequencing.
    Hoang NV; Furtado A; Mason PJ; Marquardt A; Kasirajan L; Thirugnanasambandam PP; Botha FC; Henry RJ
    BMC Genomics; 2017 May; 18(1):395. PubMed ID: 28532419
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The central nervous system transcriptome of the weakly electric brown ghost knifefish (Apteronotus leptorhynchus): de novo assembly, annotation, and proteomics validation.
    Salisbury JP; Sîrbulescu RF; Moran BM; Auclair JR; Zupanc GK; Agar JN
    BMC Genomics; 2015 Mar; 16(1):166. PubMed ID: 25879418
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Reference-guided de novo assembly approach improves genome reconstruction for related species.
    Lischer HEL; Shimizu KK
    BMC Bioinformatics; 2017 Nov; 18(1):474. PubMed ID: 29126390
    [TBL] [Abstract][Full Text] [Related]  

  • 8. 454 pyrosequencing-based analysis of gene expression profiles in the amphipod Melita plumulosa: transcriptome assembly and toxicant induced changes.
    Hook SE; Twine NA; Simpson SL; Spadaro DA; Moncuquet P; Wilkins MR
    Aquat Toxicol; 2014 Aug; 153():73-88. PubMed ID: 24434169
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Assembly and annotation of a non-model gastropod (Nerita melanotragus) transcriptome: a comparison of de novo assemblers.
    Amin S; Prentis PJ; Gilding EK; Pavasovic A
    BMC Res Notes; 2014 Aug; 7():488. PubMed ID: 25084827
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Optimization of de novo transcriptome assembly from next-generation sequencing data.
    Surget-Groba Y; Montoya-Burgos JI
    Genome Res; 2010 Oct; 20(10):1432-40. PubMed ID: 20693479
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Challenges and strategies in transcriptome assembly and differential gene expression quantification. A comprehensive in silico assessment of RNA-seq experiments.
    Vijay N; Poelstra JW; Künstner A; Wolf JB
    Mol Ecol; 2013 Feb; 22(3):620-34. PubMed ID: 22998089
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Improved annotation with de novo transcriptome assembly in four social amoeba species.
    Singh R; Lawal HM; Schilde C; Glöckner G; Barton GJ; Schaap P; Cole C
    BMC Genomics; 2017 Jan; 18(1):120. PubMed ID: 28143409
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Evaluating characteristics of de novo assembly software on 454 transcriptome data: a simulation approach.
    Mundry M; Bornberg-Bauer E; Sammeth M; Feulner PG
    PLoS One; 2012; 7(2):e31410. PubMed ID: 22384018
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Transcriptome assembly, gene annotation and tissue gene expression atlas of the rainbow trout.
    Salem M; Paneru B; Al-Tobasei R; Abdouni F; Thorgaard GH; Rexroad CE; Yao J
    PLoS One; 2015; 10(3):e0121778. PubMed ID: 25793877
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Comparison of three assembly strategies for a heterozygous seedless grapevine genome assembly.
    Patel S; Lu Z; Jin X; Swaminathan P; Zeng E; Fennell AY
    BMC Genomics; 2018 Jan; 19(1):57. PubMed ID: 29343235
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Orthology Guided Assembly in highly heterozygous crops: creating a reference transcriptome to uncover genetic diversity in Lolium perenne.
    Ruttink T; Sterck L; Rohde A; Bendixen C; Rouzé P; Asp T; Van de Peer Y; Roldan-Ruiz I
    Plant Biotechnol J; 2013 Jun; 11(5):605-17. PubMed ID: 23433242
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Combining independent de novo assemblies to optimize leaf transcriptome of Persian walnut.
    Sadat-Hosseini M; Bakhtiarizadeh MR; Boroomand N; Tohidfar M; Vahdati K
    PLoS One; 2020; 15(4):e0232005. PubMed ID: 32343733
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Reference-free transcriptome assembly in non-model animals from next-generation sequencing data.
    Cahais V; Gayral P; Tsagkogeorga G; Melo-Ferreira J; Ballenghien M; Weinert L; Chiari Y; Belkhir K; Ranwez V; Galtier N
    Mol Ecol Resour; 2012 Sep; 12(5):834-45. PubMed ID: 22540679
    [TBL] [Abstract][Full Text] [Related]  

  • 19. De novo Transcriptome Assemblies of Rana (Lithobates) catesbeiana and Xenopus laevis Tadpole Livers for Comparative Genomics without Reference Genomes.
    Birol I; Behsaz B; Hammond SA; Kucuk E; Veldhoen N; Helbing CC
    PLoS One; 2015; 10(6):e0130720. PubMed ID: 26121473
    [TBL] [Abstract][Full Text] [Related]  

  • 20. FRAMA: from RNA-seq data to annotated mRNA assemblies.
    Bens M; Sahm A; Groth M; Jahn N; Morhart M; Holtze S; Hildebrandt TB; Platzer M; Szafranski K
    BMC Genomics; 2016 Jan; 17():54. PubMed ID: 26763976
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 69.