BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

1376 related articles for article (PubMed ID: 28931057)

  • 21. Optimization of de novo transcriptome assembly from high-throughput short read sequencing data improves functional annotation for non-model organisms.
    Haznedaroglu BZ; Reeves D; Rismani-Yazdi H; Peccia J
    BMC Bioinformatics; 2012 Jul; 13():170. PubMed ID: 22808927
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Comparing de novo and reference-based transcriptome assembly strategies by applying them to the blood-sucking bug Rhodnius prolixus.
    Marchant A; Mougel F; Mendonça V; Quartier M; Jacquin-Joly E; da Rosa JA; Petit E; Harry M
    Insect Biochem Mol Biol; 2016 Feb; 69():25-33. PubMed ID: 26005117
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Combined de novo and genome guided assembly and annotation of the Pinus patula juvenile shoot transcriptome.
    Visser EA; Wegrzyn JL; Steenkmap ET; Myburg AA; Naidoo S
    BMC Genomics; 2015 Dec; 16():1057. PubMed ID: 26652261
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Assessing the impact of exact reads on reducing the error rate of read mapping.
    Salari F; Zare-Mirakabad F; Sadeghi M; Rokni-Zadeh H
    BMC Bioinformatics; 2018 Nov; 19(1):406. PubMed ID: 30400807
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Combining independent de novo assemblies optimizes the coding transcriptome for nonconventional model eukaryotic organisms.
    Cerveau N; Jackson DJ
    BMC Bioinformatics; 2016 Dec; 17(1):525. PubMed ID: 27938328
    [TBL] [Abstract][Full Text] [Related]  

  • 26. TraRECo: a greedy approach based de novo transcriptome assembler with read error correction using consensus matrix.
    Yoon S; Kim D; Kang K; Park WJ
    BMC Genomics; 2018 Sep; 19(1):653. PubMed ID: 30180798
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Evolutionary insights from de novo transcriptome assembly and SNP discovery in California white oaks.
    Cokus SJ; Gugger PF; Sork VL
    BMC Genomics; 2015 Jul; 16(1):552. PubMed ID: 26215102
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Ion Torrent and lllumina, two complementary RNA-seq platforms for constructing the holm oak (Quercus ilex) transcriptome.
    Guerrero-Sanchez VM; Maldonado-Alconada AM; Amil-Ruiz F; Verardi A; Jorrín-Novo JV; Rey MD
    PLoS One; 2019; 14(1):e0210356. PubMed ID: 30650136
    [TBL] [Abstract][Full Text] [Related]  

  • 29. A comparison of next generation sequencing technologies for transcriptome assembly and utility for RNA-Seq in a non-model bird.
    Finseth FR; Harrison RG
    PLoS One; 2014; 9(10):e108550. PubMed ID: 25279728
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Comparative study of de novo assembly and genome-guided assembly strategies for transcriptome reconstruction based on RNA-Seq.
    Lu B; Zeng Z; Shi T
    Sci China Life Sci; 2013 Feb; 56(2):143-55. PubMed ID: 23393030
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Short read Illumina data for the de novo assembly of a non-model snail species transcriptome (Radix balthica, Basommatophora, Pulmonata), and a comparison of assembler performance.
    Feldmeyer B; Wheat CW; Krezdorn N; Rotter B; Pfenninger M
    BMC Genomics; 2011 Jun; 12():317. PubMed ID: 21679424
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Optimization of next-generation sequencing transcriptome annotation for species lacking sequenced genomes.
    Ockendon NF; O'Connell LA; Bush SJ; Monzón-Sandoval J; Barnes H; Székely T; Hofmann HA; Dorus S; Urrutia AO
    Mol Ecol Resour; 2016 Mar; 16(2):446-58. PubMed ID: 26358618
    [TBL] [Abstract][Full Text] [Related]  

  • 33. SMRT sequencing only de novo assembly of the sugar beet (Beta vulgaris) chloroplast genome.
    Stadermann KB; Weisshaar B; Holtgräwe D
    BMC Bioinformatics; 2015 Sep; 16(1):295. PubMed ID: 26377912
    [TBL] [Abstract][Full Text] [Related]  

  • 34. A comparative analysis of methods for de novo assembly of hymenopteran genomes using either haploid or diploid samples.
    Yahav T; Privman E
    Sci Rep; 2019 Apr; 9(1):6480. PubMed ID: 31019201
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Highly accurate long reads are crucial for realizing the potential of biodiversity genomics.
    Hotaling S; Wilcox ER; Heckenhauer J; Stewart RJ; Frandsen PB
    BMC Genomics; 2023 Mar; 24(1):117. PubMed ID: 36927511
    [TBL] [Abstract][Full Text] [Related]  

  • 36. De Novo Plant Transcriptome Assembly and Annotation Using Illumina RNA-Seq Reads.
    Kerr SC; Gaiti F; Tanurdzic M
    Methods Mol Biol; 2019; 1933():265-275. PubMed ID: 30945191
    [TBL] [Abstract][Full Text] [Related]  

  • 37. A linked-read approach to museomics: Higher quality de novo genome assemblies from degraded tissues.
    Colella JP; Tigano A; MacManes MD
    Mol Ecol Resour; 2020 Jul; 20(4):856-870. PubMed ID: 32153100
    [TBL] [Abstract][Full Text] [Related]  

  • 38. A high-quality annotated transcriptome of swine peripheral blood.
    Liu H; Smith TPL; Nonneman DJ; Dekkers JCM; Tuggle CK
    BMC Genomics; 2017 Jun; 18(1):479. PubMed ID: 28646867
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Comparison of assembly algorithms for improving rate of metatranscriptomic functional annotation.
    Celaj A; Markle J; Danska J; Parkinson J
    Microbiome; 2014; 2():39. PubMed ID: 25411636
    [TBL] [Abstract][Full Text] [Related]  

  • 40. RNA sequencing read depth requirement for optimal transcriptome coverage in Hevea brasiliensis.
    Chow KS; Ghazali AK; Hoh CC; Mohd-Zainuddin Z
    BMC Res Notes; 2014 Feb; 7():69. PubMed ID: 24484543
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 69.