BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

395 related articles for article (PubMed ID: 28931523)

  • 1. Contribution of myo-inositol oxygenase in AGE:RAGE-mediated renal tubulointerstitial injury in the context of diabetic nephropathy.
    Sharma I; Tupe RS; Wallner AK; Kanwar YS
    Am J Physiol Renal Physiol; 2018 Jan; 314(1):F107-F121. PubMed ID: 28931523
    [TBL] [Abstract][Full Text] [Related]  

  • 2. myo-Inositol Oxygenase Overexpression Accentuates Generation of Reactive Oxygen Species and Exacerbates Cellular Injury following High Glucose Ambience: A NEW MECHANISM RELEVANT TO THE PATHOGENESIS OF DIABETIC NEPHROPATHY.
    Sun L; Dutta RK; Xie P; Kanwar YS
    J Biol Chem; 2016 Mar; 291(11):5688-5707. PubMed ID: 26792859
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Pathobiology of renal-specific oxidoreductase/myo-inositol oxygenase in diabetic nephropathy: its implications in tubulointerstitial fibrosis.
    Xie P; Sun L; Oates PJ; Srivastava SK; Kanwar YS
    Am J Physiol Renal Physiol; 2010 Jun; 298(6):F1393-404. PubMed ID: 20335317
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Osteomeles schwerinae extracts inhibits the binding to receptors of advanced glycation end products and TGF-β1 expression in mesangial cells under diabetic conditions.
    Kim YS; Jung DH; Lee IS; Pyun BJ; Kim JS
    Phytomedicine; 2016 Apr; 23(4):388-97. PubMed ID: 27002409
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Transcriptional and Translational Modulation of myo-Inositol Oxygenase (Miox) by Fatty Acids: IMPLICATIONS IN RENAL TUBULAR INJURY INDUCED IN OBESITY AND DIABETES.
    Tominaga T; Dutta RK; Joladarashi D; Doi T; Reddy JK; Kanwar YS
    J Biol Chem; 2016 Jan; 291(3):1348-67. PubMed ID: 26578517
    [TBL] [Abstract][Full Text] [Related]  

  • 6.
    Sharma I; Deng F; Liao Y; Kanwar YS
    Diabetes; 2020 Jun; 69(6):1248-1263. PubMed ID: 32169892
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Disruption of renal tubular mitochondrial quality control by Myo-inositol oxygenase in diabetic kidney disease.
    Zhan M; Usman IM; Sun L; Kanwar YS
    J Am Soc Nephrol; 2015 Jun; 26(6):1304-21. PubMed ID: 25270067
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Sirt1 resists advanced glycation end products-induced expressions of fibronectin and TGF-β1 by activating the Nrf2/ARE pathway in glomerular mesangial cells.
    Huang K; Huang J; Xie X; Wang S; Chen C; Shen X; Liu P; Huang H
    Free Radic Biol Med; 2013 Dec; 65():528-540. PubMed ID: 23891678
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Increased expression of myo-inositol oxygenase is involved in the tubulointerstitial injury of diabetic nephropathy.
    Lu Y; Liu C; Miao X; Xu K; Wu X; Liu C
    Exp Clin Endocrinol Diabetes; 2009 Jun; 117(6):257-65. PubMed ID: 19053028
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mechanistic role of Syzygium cumini (L.) Skeels in glycation induced diabetic nephropathy via RAGE-NF-κB pathway and extracellular proteins modifications: A molecular approach.
    Apte MM; Khattar E; Tupe RS
    J Ethnopharmacol; 2024 Mar; 322():117573. PubMed ID: 38110133
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Myo-inositol oxygenase accentuates renal tubular injury initiated by endoplasmic reticulum stress.
    Tominaga T; Sharma I; Fujita Y; Doi T; Wallner AK; Kanwar YS
    Am J Physiol Renal Physiol; 2019 Feb; 316(2):F301-F315. PubMed ID: 30539651
    [TBL] [Abstract][Full Text] [Related]  

  • 12. High Glucose-Induced Hypomethylation Promotes Binding of Sp-1 to Myo-Inositol Oxygenase: Implication in the Pathobiology of Diabetic Tubulopathy.
    Sharma I; Dutta RK; Singh NK; Kanwar YS
    Am J Pathol; 2017 Apr; 187(4):724-739. PubMed ID: 28208054
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Modulation of gentamicin-induced acute kidney injury by myo-inositol oxygenase via the ROS/ALOX-12/12-HETE/GPR31 signaling pathway.
    Sharma I; Liao Y; Zheng X; Kanwar YS
    JCI Insight; 2022 Mar; 7(6):. PubMed ID: 35315361
    [TBL] [Abstract][Full Text] [Related]  

  • 14. AGE-RAGE axis blockade in diabetic nephropathy: Current status and future directions.
    Sanajou D; Ghorbani Haghjo A; Argani H; Aslani S
    Eur J Pharmacol; 2018 Aug; 833():158-164. PubMed ID: 29883668
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The Kidney Specific Protein myo-Inositol Oxygenase, a Potential Biomarker for Diabetic Nephropathy.
    Gao P; Xu B; Song P; Zhu X; Yuan S; Kanwar YS; Sun L
    Kidney Blood Press Res; 2018; 43(6):1772-1785. PubMed ID: 30504713
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Beneficial Effects of
    Dutta RK; Kondeti VK; Sharma I; Chandel NS; Quaggin SE; Kanwar YS
    J Am Soc Nephrol; 2017 May; 28(5):1421-1436. PubMed ID: 27895157
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The receptor for advanced glycation endproducts mediates podocyte heparanase expression through NF-κB signaling pathway.
    An X; Zhang L; Yao Q; Li L; Wang B; Zhang J; He M; Zhang J
    Mol Cell Endocrinol; 2018 Jul; 470():14-25. PubMed ID: 28478303
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Pigment epithelium-derived factor (PEDF) inhibits proximal tubular cell injury in early diabetic nephropathy by suppressing advanced glycation end products (AGEs)-receptor (RAGE) axis.
    Maeda S; Matsui T; Takeuchi M; Yoshida Y; Yamakawa R; Fukami K; Yamagishi S
    Pharmacol Res; 2011 Mar; 63(3):241-8. PubMed ID: 21115116
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Metformin inhibits advanced glycation end products (AGEs)-induced renal tubular cell injury by suppressing reactive oxygen species generation via reducing receptor for AGEs (RAGE) expression.
    Ishibashi Y; Matsui T; Takeuchi M; Yamagishi S
    Horm Metab Res; 2012 Nov; 44(12):891-5. PubMed ID: 22864903
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Salvianolic Acid A Protects Against Diabetic Nephropathy through Ameliorating Glomerular Endothelial Dysfunction via Inhibiting AGE-RAGE Signaling.
    Hou B; Qiang G; Zhao Y; Yang X; Chen X; Yan Y; Wang X; Liu C; Zhang L; Du G
    Cell Physiol Biochem; 2017; 44(6):2378-2394. PubMed ID: 29262395
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 20.