These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

404 related articles for article (PubMed ID: 28931613)

  • 1. Interacting networks of brain regions underlie human spatial navigation: a review and novel synthesis of the literature.
    Ekstrom AD; Huffman DJ; Starrett M
    J Neurophysiol; 2017 Dec; 118(6):3328-3344. PubMed ID: 28931613
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The retrosplenial-parietal network and reference frame coordination for spatial navigation.
    Clark BJ; Simmons CM; Berkowitz LE; Wilber AA
    Behav Neurosci; 2018 Oct; 132(5):416-429. PubMed ID: 30091619
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Spatial coordinate transforms linking the allocentric hippocampal and egocentric parietal primate brain systems for memory, action in space, and navigation.
    Rolls ET
    Hippocampus; 2020 Apr; 30(4):332-353. PubMed ID: 31697002
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A critical review of the allocentric spatial representation and its neural underpinnings: toward a network-based perspective.
    Ekstrom AD; Arnold AE; Iaria G
    Front Hum Neurosci; 2014; 8():803. PubMed ID: 25346679
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Granger causal connectivity dissociates navigation networks that subserve allocentric and egocentric path integration.
    Lin CT; Chiu TC; Wang YK; Chuang CH; Gramann K
    Brain Res; 2018 Jan; 1679():91-100. PubMed ID: 29158177
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Flexible use of allocentric and egocentric spatial memories activates differential neural networks in mice.
    Rinaldi A; De Leonibus E; Cifra A; Torromino G; Minicocci E; De Sanctis E; López-Pedrajas RM; Oliverio A; Mele A
    Sci Rep; 2020 Jul; 10(1):11338. PubMed ID: 32647258
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Age-Related Differences in Functional and Structural Connectivity in the Spatial Navigation Brain Network.
    Ramanoël S; York E; Le Petit M; Lagrené K; Habas C; Arleo A
    Front Neural Circuits; 2019; 13():69. PubMed ID: 31736716
    [TBL] [Abstract][Full Text] [Related]  

  • 8. EEG correlates of spatial orientation in the human retrosplenial complex.
    Lin CT; Chiu TC; Gramann K
    Neuroimage; 2015 Oct; 120():123-32. PubMed ID: 26163801
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Close but no cigar: Spatial precision deficits following medial temporal lobe lesions provide novel insight into theoretical models of navigation and memory.
    Kolarik BS; Baer T; Shahlaie K; Yonelinas AP; Ekstrom AD
    Hippocampus; 2018 Jan; 28(1):31-41. PubMed ID: 28888032
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Environmental Anchoring of Head Direction in a Computational Model of Retrosplenial Cortex.
    Bicanski A; Burgess N
    J Neurosci; 2016 Nov; 36(46):11601-11618. PubMed ID: 27852770
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Self-reported navigation ability is associated with optic flow-sensitive regions' functional connectivity patterns during visual path integration.
    Zajac L; Burte H; Taylor HA; Killiany R
    Brain Behav; 2019 Apr; 9(4):e01236. PubMed ID: 30884216
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A neural code for egocentric spatial maps in the human medial temporal lobe.
    Kunz L; Brandt A; Reinacher PC; Staresina BP; Reifenstein ET; Weidemann CT; Herweg NA; Patel A; Tsitsiklis M; Kempter R; Kahana MJ; Schulze-Bonhage A; Jacobs J
    Neuron; 2021 Sep; 109(17):2781-2796.e10. PubMed ID: 34265253
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Human spatial navigation: Neural representations of spatial scales and reference frames obtained from an ALE meta-analysis.
    Li J; Zhang R; Liu S; Liang Q; Zheng S; He X; Huang R
    Neuroimage; 2021 Sep; 238():118264. PubMed ID: 34129948
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Neurons including hippocampal spatial view cells, and navigation in primates including humans.
    Rolls ET
    Hippocampus; 2021 Jun; 31(6):593-611. PubMed ID: 33760309
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Modeling the interaction of navigational systems in a reward-based virtual navigation task.
    Raiesdana S
    J Integr Neurosci; 2018; 17(1):27-42. PubMed ID: 29376881
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Testing Navigation in Real Space: Contributions to Understanding the Physiology and Pathology of Human Navigation Control.
    Schöberl F; Zwergal A; Brandt T
    Front Neural Circuits; 2020; 14():6. PubMed ID: 32210769
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The Cognitive Architecture of Spatial Navigation: Hippocampal and Striatal Contributions.
    Chersi F; Burgess N
    Neuron; 2015 Oct; 88(1):64-77. PubMed ID: 26447573
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Prolonged allocentric navigation deficits indicate hippocampal damage in TGA.
    Schöberl F; Irving S; Pradhan C; Bardins S; Trapp C; Schneider E; Kugler G; Bartenstein P; Dieterich M; Brandt T; Zwergal A
    Neurology; 2019 Jan; 92(3):e234-e243. PubMed ID: 30552301
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Dissociating spatial strategies in animal research: Critical methodological review with focus on egocentric navigation and the hippocampus.
    Johnsen SHW; Rytter HM
    Neurosci Biobehav Rev; 2021 Jul; 126():57-78. PubMed ID: 33771535
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Transcranial direct current stimulation modulates activation and effective connectivity during spatial navigation.
    Hampstead BM; Brown GS; Hartley JF
    Brain Stimul; 2014; 7(2):314-24. PubMed ID: 24472622
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 21.