These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
82 related articles for article (PubMed ID: 28931720)
1. pH control in the midgut of Nepomuceno DB; Santos VC; Araújo RN; Pereira MH; Sant'Anna MR; Moreira LA; Gontijo NF J Exp Biol; 2017 Sep; 220(Pt 18):3355-3362. PubMed ID: 28931720 [No Abstract] [Full Text] [Related]
2. The physiology of the midgut of Lutzomyia longipalpis (Lutz and Neiva 1912): pH in different physiological conditions and mechanisms involved in its control. Santos VC; Araujo RN; Machado LA; Pereira MH; Gontijo NF J Exp Biol; 2008 Sep; 211(Pt 17):2792-8. PubMed ID: 18723537 [TBL] [Abstract][Full Text] [Related]
3. Mechanisms of pH control in the midgut of Lutzomyia longipalpis: roles for ingested molecules and hormones. Santos VC; Nunes CA; Pereira MH; Gontijo NF J Exp Biol; 2011 May; 214(Pt 9):1411-8. PubMed ID: 21490249 [TBL] [Abstract][Full Text] [Related]
4. Clogmia albipunctata (Williston, 1893) midgut physiology: pH control and functional relationship with Lower Diptera (nematoceran) especially with hematophagous species. Malta LGF; Koerich LB; D'Ávila Pessoa GC; Araujo RN; Sant'Anna MRV; Pereira MH; Gontijo NF Comp Biochem Physiol A Mol Integr Physiol; 2024 Apr; 290():111584. PubMed ID: 38224901 [TBL] [Abstract][Full Text] [Related]
5. The role of LuloPAT amino acid/proton symporters in midgut alkalinization in the sandfly Lutzomyia longipalpis (Diptera - Psychodidae). Nepomuceno DB; Paim RMM; Araújo RN; Pereira MH; Pessoa GCD; Koerich LB; Sant'Anna MRV; Gontijo NF J Insect Physiol; 2020 Jan; 120():103973. PubMed ID: 31715141 [TBL] [Abstract][Full Text] [Related]
6. Heterogeneity of midgut cells and their differential responses to blood meal ingestion by the mosquito, Aedes aegypti. Cui Y; Franz AWE Insect Biochem Mol Biol; 2020 Dec; 127():103496. PubMed ID: 33188922 [TBL] [Abstract][Full Text] [Related]
7. Increase in the size of the amino acid pool is sufficient to activate translation of early trypsin mRNA in Aedes aegypti midgut. Noriega FG; Colonna AE; Wells MA Insect Biochem Mol Biol; 1999 Mar; 29(3):243-7. PubMed ID: 10319437 [TBL] [Abstract][Full Text] [Related]
8. The antioxidant role of xanthurenic acid in the Aedes aegypti midgut during digestion of a blood meal. Lima VL; Dias F; Nunes RD; Pereira LO; Santos TS; Chiarini LB; Ramos TD; Silva-Mendes BJ; Perales J; Valente RH; Oliveira PL PLoS One; 2012; 7(6):e38349. PubMed ID: 22701629 [TBL] [Abstract][Full Text] [Related]
9. Microprofiles of oxygen, redox potential, and pH, and microbial fermentation products in the highly alkaline gut of the saprophagous larva of Penthetria holosericea (Diptera: Bibionidae). Šustr V; Stingl U; Brune A J Insect Physiol; 2014 Aug; 67():64-9. PubMed ID: 24971929 [TBL] [Abstract][Full Text] [Related]
10. A tubular network associated with the brush-border surface of the Aedes aegypti midgut: implications for pathogen transmission by mosquitoes. Zieler H; Garon CF; Fischer ER; Shahabuddin M J Exp Biol; 2000 May; 203(Pt 10):1599-611. PubMed ID: 10769222 [TBL] [Abstract][Full Text] [Related]
11. Midgut pH profile and protein digestion in the larvae of Lutzomyia longipalpis (Diptera: Psychodidae). Fazito do Vale V; Pereira MH; Gontijo NF J Insect Physiol; 2007 Nov; 53(11):1151-9. PubMed ID: 17659300 [TBL] [Abstract][Full Text] [Related]
12. Free amino acids are important for the retention of protein and non-protein meals by the midgut of Aedes aegypti females. Caroci AS; Noriega FG J Insect Physiol; 2003 Sep; 49(9):839-44. PubMed ID: 16256686 [TBL] [Abstract][Full Text] [Related]
13. Serotonin-induced high intracellular pH aids in alkali secretion in the anterior midgut of larval yellow fever mosquito Aedes aegypti L. Onken H; Parks SK; Goss GG; Moffett DF J Exp Biol; 2009 Aug; 212(Pt 16):2571-8. PubMed ID: 19648402 [TBL] [Abstract][Full Text] [Related]
14. Sugar digestion in mosquitoes: identification and characterization of three midgut alpha-glucosidases of the neo-tropical malaria vector Anopheles aquasalis (Diptera: Culicidae). Souza-Neto JA; Machado FP; Lima JB; Valle D; Ribolla PE Comp Biochem Physiol A Mol Integr Physiol; 2007 Aug; 147(4):993-1000. PubMed ID: 17449310 [TBL] [Abstract][Full Text] [Related]
16. The use of a chemically defined artificial diet as a tool to study Aedes aegypti physiology. Talyuli OA; Bottino-Rojas V; Taracena ML; Soares AL; Oliveira JH; Oliveira PL J Insect Physiol; 2015 Dec; 83():1-7. PubMed ID: 26578294 [TBL] [Abstract][Full Text] [Related]
17. cAMP: A second messenger involved in the mechanism of midgut alkalinization in Lutzomyia longipalpis. Nepomuceno DB; D'Ávila Pessoa GC; Koerich LB; Pereira MH; Sant'Anna MRV; Araújo RN; Gontijo NF Insect Sci; 2022 Aug; 29(4):1059-1070. PubMed ID: 34730278 [TBL] [Abstract][Full Text] [Related]
18. Imidacloprid impairs the post-embryonic development of the midgut in the yellow fever mosquito Stegomyia aegypti (=Aedes aegypti). Fernandes KM; Gonzaga WG; Pascini TV; Miranda FR; Tomé HV; Serrão JE; Martins GF Med Vet Entomol; 2015 Sep; 29(3):245-54. PubMed ID: 25968596 [TBL] [Abstract][Full Text] [Related]
19. Alpha-COPI coatomer protein is required for rough endoplasmic reticulum whorl formation in mosquito midgut epithelial cells. Zhou G; Isoe J; Day WA; Miesfeld RL PLoS One; 2011 Mar; 6(3):e18150. PubMed ID: 21483820 [TBL] [Abstract][Full Text] [Related]
20. The digestive system of the "stick bug" Cladomorphus phyllinus (Phasmida, Phasmatidae): a morphological, physiological and biochemical analysis. Monteiro EC; Tamaki FK; Terra WR; Ribeiro AF Arthropod Struct Dev; 2014 Mar; 43(2):123-34. PubMed ID: 24374178 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]