These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

165 related articles for article (PubMed ID: 28931732)

  • 1. Extending the durability of cultivar resistance by limiting epidemic growth rates.
    Carolan K; Helps J; van den Berg F; Bain R; Paveley N; van den Bosch F
    Proc Biol Sci; 2017 Sep; 284(1863):. PubMed ID: 28931732
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Rotating and stacking genes can improve crop resistance durability while potentially selecting highly virulent pathogen strains.
    Crété R; Pires RN; Barbetti MJ; Renton M
    Sci Rep; 2020 Nov; 10(1):19752. PubMed ID: 33184393
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Super-races are not likely to dominate a fungal population within a life time of a perennial crop plantation of cultivar mixtures: a simulation study.
    Xu X
    BMC Ecol; 2012 Aug; 12():16. PubMed ID: 22862832
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Pathogen fitness penalty as a predictor of durability of disease resistance genes.
    Leach JE; Vera Cruz CM; Bai J; Leung H
    Annu Rev Phytopathol; 2001; 39():187-224. PubMed ID: 11701864
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Assessing the durability and efficiency of landscape-based strategies to deploy plant resistance to pathogens.
    Rimbaud L; Papaïx J; Rey JF; Barrett LG; Thrall PH
    PLoS Comput Biol; 2018 Apr; 14(4):e1006067. PubMed ID: 29649208
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Use of multiline cultivars and cultivar mixtures for disease management.
    Mundt CC
    Annu Rev Phytopathol; 2002; 40():381-410. PubMed ID: 12147765
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Epidemiology and disease-control under gene-for-gene plant-pathogen interaction.
    Ohtsuki A; Sasaki A
    J Theor Biol; 2006 Feb; 238(4):780-94. PubMed ID: 16085107
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The evolution of fungicide resistance.
    Lucas JA; Hawkins NJ; Fraaije BA
    Adv Appl Microbiol; 2015; 90():29-92. PubMed ID: 25596029
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Modelling quantitative fungicide resistance and breakdown of resistant cultivars: Designing integrated disease management strategies for Septoria of winter wheat.
    Taylor NP; Cunniffe NJ
    PLoS Comput Biol; 2023 Mar; 19(3):e1010969. PubMed ID: 36976791
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Profitability of Integrated Management of Fusarium Head Blight in North Carolina Winter Wheat.
    Cowger C; Weisz R; Arellano C; Murphy P
    Phytopathology; 2016 Aug; 106(8):814-23. PubMed ID: 27111803
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mechanisms of fungicide resistance in phytopathogenic fungi.
    Steffens JJ; Pell EJ; Tien M
    Curr Opin Biotechnol; 1996 Jun; 7(3):348-55. PubMed ID: 8785443
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The evolution of plant pathogens in response to host resistance: factors affecting the gain from deployment of qualitative and quantitative resistance.
    Lo Iacono G; van den Bosch F; Paveley N
    J Theor Biol; 2012 Jul; 304():152-63. PubMed ID: 22483999
    [TBL] [Abstract][Full Text] [Related]  

  • 13. RELATIONSHIP BETWEEN PATHOGENICITY AND FUNGICIDE TOLERANCE IN THE WHEAT PATHOGEN MYCOSPHAERELLA GRAMINICOLA.
    Siah A; Deweer C; Tisserant B; Randoux B; Halama P; Reignault P
    Commun Agric Appl Biol Sci; 2015; 80(3):589-93. PubMed ID: 27141758
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Genetics and Adaptation of Soybean Cyst Nematode to Broad Spectrum Soybean Resistance.
    Gardner M; Heinz R; Wang J; Mitchum MG
    G3 (Bethesda); 2017 Mar; 7(3):835-841. PubMed ID: 28064187
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Variation and selection of quantitative traits in plant pathogens.
    Lannou C
    Annu Rev Phytopathol; 2012; 50():319-38. PubMed ID: 22702351
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Fungi, fungicide discovery and global food security.
    Steinberg G; Gurr SJ
    Fungal Genet Biol; 2020 Nov; 144():103476. PubMed ID: 33053432
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Durable resistance of crops to disease: a Darwinian perspective.
    Brown JK
    Annu Rev Phytopathol; 2015; 53():513-39. PubMed ID: 26077539
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The genetic basis of local adaptation for pathogenic fungi in agricultural ecosystems.
    Croll D; McDonald BA
    Mol Ecol; 2017 Apr; 26(7):2027-2040. PubMed ID: 27696587
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [Contribution of cell and molecular biology and genetics to plant protection].
    Durand-Tardif M; Pelletier G
    C R Biol; 2003 Jan; 326(1):23-35. PubMed ID: 12741179
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Evolution of virulence in fungal plant pathogens: exploiting fungal genomics to control plant disease.
    Howlett BJ; Lowe RG; Marcroft SJ; van de Wouw AP
    Mycologia; 2015; 107(3):441-51. PubMed ID: 25725000
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.