These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

247 related articles for article (PubMed ID: 28931892)

  • 1. New views on phototransduction from atomic force microscopy and single molecule force spectroscopy on native rods.
    Maity S; Ilieva N; Laio A; Torre V; Mazzolini M
    Sci Rep; 2017 Sep; 7(1):12000. PubMed ID: 28931892
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Investigating the Nanodomain Organization of Rhodopsin in Native Membranes by Atomic Force Microscopy.
    Senapati S; Park PS
    Methods Mol Biol; 2019; 1886():61-74. PubMed ID: 30374862
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Nanodomain organization of rhodopsin in native human and murine rod outer segment disc membranes.
    Whited AM; Park PS
    Biochim Biophys Acta; 2015 Jan; 1848(1 Pt A):26-34. PubMed ID: 25305340
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mechanical Unfolding and Refolding of Single Membrane Proteins by Atomic Force Microscopy.
    Ritzmann N; Thoma J
    Methods Mol Biol; 2020; 2127():359-372. PubMed ID: 32112333
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Tuning outer segment Ca2+ homeostasis to phototransduction in rods and cones.
    Korenbrot JI; Rebrik TI
    Adv Exp Med Biol; 2002; 514():179-203. PubMed ID: 12596922
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Rhodopsin Forms Nanodomains in Rod Outer Segment Disc Membranes of the Cold-Blooded Xenopus laevis.
    Rakshit T; Senapati S; Sinha S; Whited AM; Park PS
    PLoS One; 2015; 10(10):e0141114. PubMed ID: 26492040
    [TBL] [Abstract][Full Text] [Related]  

  • 7. High-resolution atomic force microscopy imaging of rhodopsin in rod outer segment disk membranes.
    Bosshart PD; Engel A; Fotiadis D
    Methods Mol Biol; 2015; 1271():189-203. PubMed ID: 25697525
    [TBL] [Abstract][Full Text] [Related]  

  • 8. In vivo optophysiology reveals that G-protein activation triggers osmotic swelling and increased light scattering of rod photoreceptors.
    Zhang P; Zawadzki RJ; Goswami M; Nguyen PT; Yarov-Yarovoy V; Burns ME; Pugh EN
    Proc Natl Acad Sci U S A; 2017 Apr; 114(14):E2937-E2946. PubMed ID: 28320964
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Dynamic single-molecule force spectroscopy of rhodopsin in native membranes.
    Park PS; Müller DJ
    Methods Mol Biol; 2015; 1271():173-85. PubMed ID: 25697524
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Adaptations in rod outer segment disc membranes in response to environmental lighting conditions.
    Rakshit T; Senapati S; Parmar VM; Sahu B; Maeda A; Park PS
    Biochim Biophys Acta Mol Cell Res; 2017 Oct; 1864(10):1691-1702. PubMed ID: 28645515
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Understanding the Rhodopsin Worldview Through Atomic Force Microscopy (AFM): Structure, Stability, and Activity Studies.
    Senapati S; Park PS
    Chem Rec; 2023 Oct; 23(10):e202300113. PubMed ID: 37265335
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The role of cholesterol in rod outer segment membranes.
    Albert AD; Boesze-Battaglia K
    Prog Lipid Res; 2005; 44(2-3):99-124. PubMed ID: 15924998
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cyclic nucleotide-gated ion channels in rod photoreceptors are protected from retinoid inhibition.
    He Q; Alexeev D; Estevez ME; McCabe SL; Calvert PD; Ong DE; Cornwall MC; Zimmerman AL; Makino CL
    J Gen Physiol; 2006 Oct; 128(4):473-85. PubMed ID: 17001087
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Dynamics of mouse rod phototransduction and its sensitivity to variation of key parameters.
    Shen L; Caruso G; Bisegna P; Andreucci D; Gurevich VV; Hamm HE; DiBenedetto E
    IET Syst Biol; 2010 Jan; 4(1):12-32. PubMed ID: 20001089
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Calcium flares and compartmentalization in rod photoreceptors.
    Li Y; Falleroni F; Mortal S; Bocchero U; Cojoc D; Torre V
    Proc Natl Acad Sci U S A; 2020 Sep; 117(35):21701-21710. PubMed ID: 32817426
    [TBL] [Abstract][Full Text] [Related]  

  • 16. High-speed atomic force microscopy: imaging and force spectroscopy.
    Eghiaian F; Rico F; Colom A; Casuso I; Scheuring S
    FEBS Lett; 2014 Oct; 588(19):3631-8. PubMed ID: 24937145
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Rhodopsin is spatially heterogeneously distributed in rod outer segment disk membranes.
    Buzhynskyy N; Salesse C; Scheuring S
    J Mol Recognit; 2011; 24(3):483-9. PubMed ID: 21504027
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mechanical unfolding of a β-barrel membrane protein by single-molecule force spectroscopy.
    Chen H; Song G; Zhang Y; Ni D; Zhang X; Huang Y; Lou J
    Sci China Life Sci; 2021 Feb; 64(2):334-336. PubMed ID: 32737852
    [No Abstract]   [Full Text] [Related]  

  • 19. Membrane protein diffusion sets the speed of rod phototransduction.
    Calvert PD; Govardovskii VI; Krasnoperova N; Anderson RE; Lem J; Makino CL
    Nature; 2001 May; 411(6833):90-4. PubMed ID: 11333983
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Reconstruction of mechanical unfolding and refolding pathways of proteins with atomic force spectroscopy and computer simulations.
    Li Q; Apostolidou D; Marszalek PE
    Methods; 2022 Jan; 197():39-53. PubMed ID: 34020035
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.