These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

162 related articles for article (PubMed ID: 28931932)

  • 1. Decoherence Control of Nitrogen-Vacancy Centers.
    Lei C; Peng S; Ju C; Yung MH; Du J
    Sci Rep; 2017 Sep; 7(1):11937. PubMed ID: 28931932
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Quantum decoherence and quasi-equilibrium in open quantum systems with few degrees of freedom: application to 1H NMR of nematic liquid crystals.
    Segnorile HH; Zamar RC
    J Chem Phys; 2011 Dec; 135(24):244509. PubMed ID: 22225171
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Solid-state electronic spin coherence time approaching one second.
    Bar-Gill N; Pham LM; Jarmola A; Budker D; Walsworth RL
    Nat Commun; 2013; 4():1743. PubMed ID: 23612284
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cavity QED implementation of non-adiabatic holonomies for universal quantum gates in decoherence-free subspaces with nitrogen-vacancy centers.
    Zhou J; Yu WC; Gao YM; Xue ZY
    Opt Express; 2015 Jun; 23(11):14027-35. PubMed ID: 26072772
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Controlling the quantum dynamics of a mesoscopic spin bath in diamond.
    de Lange G; van der Sar T; Blok M; Wang ZH; Dobrovitski V; Hanson R
    Sci Rep; 2012; 2():382. PubMed ID: 22536480
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Coherence-protected quantum gate by continuous dynamical decoupling in diamond.
    Xu X; Wang Z; Duan C; Huang P; Wang P; Wang Y; Xu N; Kong X; Shi F; Rong X; Du J
    Phys Rev Lett; 2012 Aug; 109(7):070502. PubMed ID: 23006348
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Dynamics of quantum correlation between separated nitrogen-vacancy centers embedded in plasmonic waveguide.
    Yang WL; An JH; Zhang CJ; Chen CY; Oh CH
    Sci Rep; 2015 Oct; 5():15513. PubMed ID: 26493045
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Coherence-preserving quantum bits.
    Bacon D; Brown KR; Whaley KB
    Phys Rev Lett; 2001 Dec; 87(24):247902. PubMed ID: 11736540
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Anomalous decoherence effect in a quantum bath.
    Zhao N; Wang ZY; Liu RB
    Phys Rev Lett; 2011 May; 106(21):217205. PubMed ID: 21699338
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Can We Advance Macroscopic Quantum Systems Outside the Framework of Complex Decoherence Theory?
    Brezinski ME; Rupnick M
    J Comput Sci Syst Biol; 2014 Jul; 7(4):119-136. PubMed ID: 29200743
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Understanding Central Spin Decoherence Due to Interacting Dissipative Spin Baths.
    Onizhuk M; Wang YX; Nagura J; Clerk AA; Galli G
    Phys Rev Lett; 2024 Jun; 132(25):250401. PubMed ID: 38996232
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Extending the Quantum Coherence of a Near-Surface Qubit by Coherently Driving the Paramagnetic Surface Environment.
    Bluvstein D; Zhang Z; McLellan CA; Williams NR; Jayich ACB
    Phys Rev Lett; 2019 Oct; 123(14):146804. PubMed ID: 31702182
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Dynamics of multipartite quantum steering for different types of decoherence channels.
    Li WC; Xiao Y; Han XH; Fan X; Hei XB; Gu YJ
    Sci Rep; 2023 Mar; 13(1):3798. PubMed ID: 36882469
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Quantifying Early Time Quantum Decoherence Dynamics through Fluctuations.
    Gu B; Franco I
    J Phys Chem Lett; 2017 Sep; 8(17):4289-4294. PubMed ID: 28823164
    [TBL] [Abstract][Full Text] [Related]  

  • 15. High-Density Quantum Sensing with Dissipative First Order Transitions.
    Raghunandan M; Wrachtrup J; Weimer H
    Phys Rev Lett; 2018 Apr; 120(15):150501. PubMed ID: 29756853
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Revealing the Emergence of Classicality Using Nitrogen-Vacancy Centers.
    Unden TK; Louzon D; Zwolak M; Zurek WH; Jelezko F
    Phys Rev Lett; 2019 Oct; 123(14):140402. PubMed ID: 31702205
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Concentration of entangled nitrogen-vacancy centers in decoherence free subspace.
    Wang C; Wang TJ; Zhang Y; Jiao RZ; Jin GS
    Opt Express; 2014 Jan; 22(2):1551-9. PubMed ID: 24515161
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Decoherence of multiple quantum coherences generated from a dipolar ordered state.
    González CE; Segnorile HH; Zamar RC
    Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Jan; 83(1 Pt 1):011705. PubMed ID: 21405703
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Quantum irreversible decoherence behaviour in open quantum systems with few degrees of freedom: application to 1H NMR reversion experiments in nematic liquid crystals.
    Segnorile HH; Zamar RC
    J Chem Phys; 2013 Oct; 139(15):154901. PubMed ID: 24160540
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Electron transfer, decoherence, and protein dynamics: insights from atomistic simulations.
    Narth C; Gillet N; Cailliez F; Lévy B; de la Lande A
    Acc Chem Res; 2015 Apr; 48(4):1090-7. PubMed ID: 25730126
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.