These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

197 related articles for article (PubMed ID: 28932622)

  • 1. High-throughput Nuclear Delivery and Rapid Expression of DNA via Mechanical and Electrical Cell-Membrane Disruption.
    Ding X; Stewart M; Sharei A; Weaver JC; Langer RS; Jensen KF
    Nat Biomed Eng; 2017; 1():. PubMed ID: 28932622
    [TBL] [Abstract][Full Text] [Related]  

  • 2. ESCRTs breach the nuclear border.
    Webster BM; Lusk CP
    Nucleus; 2015; 6(3):197-202. PubMed ID: 25942571
    [TBL] [Abstract][Full Text] [Related]  

  • 3. CHMP7, a novel ESCRT-III-related protein, associates with CHMP4b and functions in the endosomal sorting pathway.
    Horii M; Shibata H; Kobayashi R; Katoh K; Yorikawa C; Yasuda J; Maki M
    Biochem J; 2006 Nov; 400(1):23-32. PubMed ID: 16856878
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Microfluidic electro-sonoporation: a multi-modal cell poration methodology through simultaneous application of electric field and ultrasonic wave.
    Longsine-Parker W; Wang H; Koo C; Kim J; Kim B; Jayaraman A; Han A
    Lab Chip; 2013 Jun; 13(11):2144-52. PubMed ID: 23615834
    [TBL] [Abstract][Full Text] [Related]  

  • 5. LEM2 recruits CHMP7 for ESCRT-mediated nuclear envelope closure in fission yeast and human cells.
    Gu M; LaJoie D; Chen OS; von Appen A; Ladinsky MS; Redd MJ; Nikolova L; Bjorkman PJ; Sundquist WI; Ullman KS; Frost A
    Proc Natl Acad Sci U S A; 2017 Mar; 114(11):E2166-E2175. PubMed ID: 28242692
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Consequences of a tight squeeze: Nuclear envelope rupture and repair.
    Isermann P; Lammerding J
    Nucleus; 2017 May; 8(3):268-274. PubMed ID: 28287898
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Super-resolution imaging of ESCRT-proteins at HIV-1 assembly sites.
    Prescher J; Baumgärtel V; Ivanchenko S; Torrano AA; Bräuchle C; Müller B; Lamb DC
    PLoS Pathog; 2015 Feb; 11(2):e1004677. PubMed ID: 25710462
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Intracellular localization and delivery of plasmid DNA by biodegradable microsphere-mediated femtosecond laser optoporation.
    Ishii A; Hiruta Y; Heinemann D; Heisterkamp A; Kanazawa H; Terakawa M
    J Biophotonics; 2017 Dec; 10(12):1723-1731. PubMed ID: 28464530
    [TBL] [Abstract][Full Text] [Related]  

  • 9. ESCRT-III mediates budding across the inner nuclear membrane and regulates its integrity.
    Arii J; Watanabe M; Maeda F; Tokai-Nishizumi N; Chihara T; Miura M; Maruzuru Y; Koyanagi N; Kato A; Kawaguchi Y
    Nat Commun; 2018 Aug; 9(1):3379. PubMed ID: 30139939
    [TBL] [Abstract][Full Text] [Related]  

  • 10. ESCRT-0 Component Hrs Promotes Macropinocytosis of Kaposi's Sarcoma-Associated Herpesvirus in Human Dermal Microvascular Endothelial Cells.
    Veettil MV; Kumar B; Ansari MA; Dutta D; Iqbal J; Gjyshi O; Bottero V; Chandran B
    J Virol; 2016 Apr; 90(8):3860-3872. PubMed ID: 26819309
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Single-Cell Point Constrictions for Reagent-Free High-Throughput Mechanical Lysis and Intact Nuclei Isolation.
    Huang X; Xing X; Ng CN; Yobas L
    Micromachines (Basel); 2019 Jul; 10(7):. PubMed ID: 31331049
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Human CHMP6, a myristoylated ESCRT-III protein, interacts directly with an ESCRT-II component EAP20 and regulates endosomal cargo sorting.
    Yorikawa C; Shibata H; Waguri S; Hatta K; Horii M; Katoh K; Kobayashi T; Uchiyama Y; Maki M
    Biochem J; 2005 Apr; 387(Pt 1):17-26. PubMed ID: 15511219
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Negative membrane curvature catalyzes nucleation of endosomal sorting complex required for transport (ESCRT)-III assembly.
    Lee IH; Kai H; Carlson LA; Groves JT; Hurley JH
    Proc Natl Acad Sci U S A; 2015 Dec; 112(52):15892-7. PubMed ID: 26668364
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Numerical simulation of intracellular drug delivery via rapid squeezing.
    Nikfar M; Razizadeh M; Paul R; Zhou Y; Liu Y
    Biomicrofluidics; 2021 Jul; 15(4):044102. PubMed ID: 34367404
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Dielectrophoretically-assisted electroporation using light-activated virtual microelectrodes for multiple DNA transfection.
    Wang CH; Lee YH; Kuo HT; Liang WF; Li WJ; Lee GB
    Lab Chip; 2014 Feb; 14(3):592-601. PubMed ID: 24322338
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Microfluidic electroporation for delivery of small molecules and genes into cells using a common DC power supply.
    Wang HY; Lu C
    Biotechnol Bioeng; 2008 Jun; 100(3):579-86. PubMed ID: 18183631
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Border Safety: Quality Control at the Nuclear Envelope.
    Webster BM; Lusk CP
    Trends Cell Biol; 2016 Jan; 26(1):29-39. PubMed ID: 26437591
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Quantification of cellular and nuclear uptake rates of polymeric gene delivery nanoparticles and DNA plasmids via flow cytometry.
    Bishop CJ; Majewski RL; Guiriba TR; Wilson DR; Bhise NS; Quiñones-Hinojosa A; Green JJ
    Acta Biomater; 2016 Jun; 37():120-30. PubMed ID: 27019146
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Electroporation of mammalian cells in a microfluidic channel with geometric variation.
    Wang HY; Lu C
    Anal Chem; 2006 Jul; 78(14):5158-64. PubMed ID: 16841942
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A microfluidic flow-through device for high throughput electrical lysis of bacterial cells based on continuous dc voltage.
    Wang HY; Bhunia AK; Lu C
    Biosens Bioelectron; 2006 Dec; 22(5):582-8. PubMed ID: 16530400
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.