These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
148 related articles for article (PubMed ID: 28932656)
1. Oxygen-Rich Lithium Oxide Phases Formed at High Pressure for Potential Lithium-Air Battery Electrode. Yang W; Kim DY; Yang L; Li N; Tang L; Amine K; Mao HK Adv Sci (Weinh); 2017 Sep; 4(9):1600453. PubMed ID: 28932656 [TBL] [Abstract][Full Text] [Related]
2. A lithium-oxygen battery based on lithium superoxide. Lu J; Lee YJ; Luo X; Lau KC; Asadi M; Wang HH; Brombosz S; Wen J; Zhai D; Chen Z; Miller DJ; Jeong YS; Park JB; Fang ZZ; Kumar B; Salehi-Khojin A; Sun YK; Curtiss LA; Amine K Nature; 2016 Jan; 529(7586):377-82. PubMed ID: 26751057 [TBL] [Abstract][Full Text] [Related]
3. Template assisted lithium superoxide growth for lithium-oxygen batteries. Wang HH; Zhang C; Gao J; Lau KC; Plunkett ST; Park M; Amine R; Curtiss LA Faraday Discuss; 2024 Jan; 248(0):48-59. PubMed ID: 37791512 [TBL] [Abstract][Full Text] [Related]
4. A room temperature rechargeable Li Kondori A; Esmaeilirad M; Harzandi AM; Amine R; Saray MT; Yu L; Liu T; Wen J; Shan N; Wang HH; Ngo AT; Redfern PC; Johnson CS; Amine K; Shahbazian-Yassar R; Curtiss LA; Asadi M Science; 2023 Feb; 379(6631):499-505. PubMed ID: 36730408 [TBL] [Abstract][Full Text] [Related]
5. Interfacial effects on lithium superoxide disproportionation in Li-O₂ batteries. Zhai D; Lau KC; Wang HH; Wen J; Miller DJ; Lu J; Kang F; Li B; Yang W; Gao J; Indacochea E; Curtiss LA; Amine K Nano Lett; 2015 Feb; 15(2):1041-6. PubMed ID: 25615912 [TBL] [Abstract][Full Text] [Related]
6. Mechanistic Evaluation of LixOy Formation on δ-MnO2 in Nonaqueous Li-Air Batteries. Liu Z; De Jesus LR; Banerjee S; Mukherjee PP ACS Appl Mater Interfaces; 2016 Sep; 8(35):23028-36. PubMed ID: 27532334 [TBL] [Abstract][Full Text] [Related]
7. First-Principles Study of the Surfaces and Equilibrium Shape of Discharge Products in Li-Air Batteries. Didar BR; Yashina L; Groß A ACS Appl Mater Interfaces; 2021 Jun; 13(21):24984-24994. PubMed ID: 34009936 [TBL] [Abstract][Full Text] [Related]
8. Ab initio thermodynamics of lithium oxides: from bulk phases to nanoparticles. Seriani N Nanotechnology; 2009 Nov; 20(44):445703. PubMed ID: 19801778 [TBL] [Abstract][Full Text] [Related]
9. Realizing the Embedded Growth of Large Li Zhang P; Zhang S; He M; Lang J; Ren A; Xu S; Yan X Adv Sci (Weinh); 2017 Nov; 4(11):1700172. PubMed ID: 29201611 [TBL] [Abstract][Full Text] [Related]
10. Tunable Oxygen Vacancies of Cobalt Oxides in Lithium-Oxygen Batteries: Morphology Control of Discharge Product. Zhang Y; Zhang S; Li H; Lin Y; Yuan M; Nan C; Chen C Nano Lett; 2023 Oct; 23(19):9119-9125. PubMed ID: 37773017 [TBL] [Abstract][Full Text] [Related]
11. Unexpected Li2O2 Film Growth on Carbon Nanotube Electrodes with CeO2 Nanoparticles in Li-O2 Batteries. Yang C; Wong RA; Hong M; Yamanaka K; Ohta T; Byon HR Nano Lett; 2016 May; 16(5):2969-74. PubMed ID: 27105122 [TBL] [Abstract][Full Text] [Related]
12. Oxygen-Based Anion Redox for Lithium Batteries. Li M; Bi X; Amine K; Lu J Acc Chem Res; 2020 Aug; 53(8):1436-1444. PubMed ID: 32634307 [TBL] [Abstract][Full Text] [Related]
13. Compatible interface design of CoO-based Li-O2 battery cathodes with long-cycling stability. Shang C; Dong S; Hu P; Guan J; Xiao D; Chen X; Zhang L; Gu L; Cui G; Chen L Sci Rep; 2015 Feb; 5():8335. PubMed ID: 25720845 [TBL] [Abstract][Full Text] [Related]
14. Cathode Local Curvature Affects Lithium Peroxide Growth in Li-O Liu B; Yang J; Duan H; Liu X; Shui J ACS Appl Mater Interfaces; 2019 Sep; 11(38):35264-35269. PubMed ID: 31486631 [TBL] [Abstract][Full Text] [Related]
15. LiO Zhang X; Guo L; Gan L; Zhang Y; Wang J; Johnson LR; Bruce PG; Peng Z J Phys Chem Lett; 2017 May; 8(10):2334-2338. PubMed ID: 28481552 [TBL] [Abstract][Full Text] [Related]
16. Theoretical prediction of LiScO Liu Z; Deng H; Zhang S; Hu W; Gao F Phys Chem Chem Phys; 2018 Aug; 20(34):22351-22358. PubMed ID: 30128455 [TBL] [Abstract][Full Text] [Related]
17. Synergistic oxygen reduction of dual redox catalysts boosting the power of lithium-air battery. Zhu YG; Goh FWT; Yan R; Wu S; Adams S; Wang Q Phys Chem Chem Phys; 2018 Nov; 20(44):27930-27936. PubMed ID: 30379163 [TBL] [Abstract][Full Text] [Related]
18. The Effect of Potassium Impurities Deliberately Introduced into Activated Carbon Cathodes on the Performance of Lithium-Oxygen Batteries. Zhai D; Lau KC; Wang HH; Wen J; Miller DJ; Kang F; Li B; Zavadil K; Curtiss LA ChemSusChem; 2015 Dec; 8(24):4235-41. PubMed ID: 26630086 [TBL] [Abstract][Full Text] [Related]
19. A high-energy-density lithium-oxygen battery based on a reversible four-electron conversion to lithium oxide. Xia C; Kwok CY; Nazar LF Science; 2018 Aug; 361(6404):777-781. PubMed ID: 30139868 [TBL] [Abstract][Full Text] [Related]
20. Thermal and electrochemical decomposition of lithium peroxide in non-catalyzed carbon cathodes for Li-air batteries. Beyer H; Meini S; Tsiouvaras N; Piana M; Gasteiger HA Phys Chem Chem Phys; 2013 Jul; 15(26):11025-37. PubMed ID: 23715054 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]