These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

120 related articles for article (PubMed ID: 28932760)

  • 1. Membrane Lipid Screen to Identify Molecular Targets of Biomolecules.
    Jimah JR; Schlesinger PH; Tolia NH
    Bio Protoc; 2017 Aug; 7(15):. PubMed ID: 28932760
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Liposome Disruption Assay to Examine Lytic Properties of Biomolecules.
    Jimah JR; Schlesinger PH; Tolia NH
    Bio Protoc; 2017 Aug; 7(15):. PubMed ID: 28932762
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Malaria parasite CelTOS targets the inner leaflet of cell membranes for pore-dependent disruption.
    Jimah JR; Salinas ND; Sala-Rabanal M; Jones NG; Sibley LD; Nichols CG; Schlesinger PH; Tolia NH
    Elife; 2016 Dec; 5():. PubMed ID: 27906127
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Chemically induced lipid phase separation in model membranes containing charged lipids: a spin label study.
    Galla HJ; Sackmann E
    Biochim Biophys Acta; 1975 Sep; 401(3):509-29. PubMed ID: 241398
    [TBL] [Abstract][Full Text] [Related]  

  • 5. How Membrane-Active Peptides Get into Lipid Membranes.
    Sani MA; Separovic F
    Acc Chem Res; 2016 Jun; 49(6):1130-8. PubMed ID: 27187572
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Direct visualization of membrane leakage induced by the antibiotic peptides: maculatin, citropin, and aurein.
    Ambroggio EE; Separovic F; Bowie JH; Fidelio GD; Bagatolli LA
    Biophys J; 2005 Sep; 89(3):1874-81. PubMed ID: 15994901
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Different structural requirements for adenylate cyclase toxin interactions with erythrocyte and liposome membranes.
    Masín J; Konopásek I; Svobodová J; Sebo P
    Biochim Biophys Acta; 2004 Jan; 1660(1-2):144-54. PubMed ID: 14757230
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Estimation of pore dimensions in lipid membranes induced by peptides and other biomolecules: A review.
    Bertrand B; Garduño-Juárez R; Munoz-Garay C
    Biochim Biophys Acta Biomembr; 2021 Apr; 1863(4):183551. PubMed ID: 33465367
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Lytic agents, cell permeability, and monolayer penetrability.
    Salton MR
    J Gen Physiol; 1968 Jul; 52(1):227-52. PubMed ID: 19873623
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Arabidopsis chloroplast lipid transport protein TGD2 disrupts membranes and is part of a large complex.
    Roston R; Gao J; Xu C; Benning C
    Plant J; 2011 Jun; 66(5):759-69. PubMed ID: 21309871
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Membrane lipids have multiple effects on interfacial catalysis by a phosphatidic acid-preferring phospholipase A1 from bovine testis.
    Lin Q; Higgs HN; Glomset JA
    Biochemistry; 2000 Aug; 39(31):9335-44. PubMed ID: 10924127
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Expansion Microscopy: Toward Nanoscale Imaging of a Diverse Range of Biomolecules.
    Klimas A; Zhao Y
    ACS Nano; 2020 Jul; 14(7):7689-7695. PubMed ID: 32628828
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Modeling Yeast Organelle Membranes and How Lipid Diversity Influences Bilayer Properties.
    Monje-Galvan V; Klauda JB
    Biochemistry; 2015 Nov; 54(45):6852-61. PubMed ID: 26497753
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Biophysical studies on agents affecting the state of membrane lipids: biochemical and pharmacological implications.
    Lenaz G; Curatola G; Mazzanti L; Parenti-Castelli G
    Mol Cell Biochem; 1978 Nov; 22(1):3-32. PubMed ID: 154058
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Lipidomic analysis of signaling pathways.
    Wakelam MJ; Pettitt TR; Postle AD
    Methods Enzymol; 2007; 432():233-46. PubMed ID: 17954220
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Applying Fluorescence Correlation Spectroscopy to Investigate Peptide-Induced Membrane Disruption.
    Kristensen K; Henriksen JR; Andresen TL
    Methods Mol Biol; 2017; 1548():159-180. PubMed ID: 28013503
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Membrane transporter dimerization driven by differential lipid solvation energetics of dissociated and associated states.
    Chadda R; Bernhardt N; Kelley EG; Teixeira SC; Griffith K; Gil-Ley A; Öztürk TN; Hughes LE; Forsythe A; Krishnamani V; Faraldo-Gómez JD; Robertson JL
    Elife; 2021 Apr; 10():. PubMed ID: 33825681
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Partially folded rhodanese or its N-terminal sequence can disrupt phospholipid vesicles.
    Mendoza JA; Grant E; Horowitz PM
    J Protein Chem; 1993 Feb; 12(1):65-9. PubMed ID: 8427635
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Infrared study of the structure and composition of rabbit lens membranes: a comparative analysis of the lipids of the nucleus, cortex and epithelium.
    Lamba OP; Borchman D; Garner WH
    Exp Eye Res; 1993 Jul; 57(1):1-12. PubMed ID: 8405165
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Assay to Measure Interactions between Purified Drp1 and Synthetic Liposomes.
    Adachi Y; Itoh K; Iijima M; Sesaki H
    Bio Protoc; 2017 May; 7(9):. PubMed ID: 28835909
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.