These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

133 related articles for article (PubMed ID: 28932762)

  • 41. Methods to monitor liposome fusion, permeability, and interaction with cells.
    Düzgüneş N; Faneca H; Lima MC
    Methods Mol Biol; 2010; 606():209-32. PubMed ID: 20013400
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Phosphatidylserine lipids and membrane order precisely regulate the activity of Polybia-MP1 peptide.
    Alvares DS; Ruggiero Neto J; Ambroggio EE
    Biochim Biophys Acta Biomembr; 2017 Jun; 1859(6):1067-1074. PubMed ID: 28274844
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Kinetics of membrane lysis by custom lytic peptides and peptide orientations in membrane.
    Chen HM; Clayton AH; Wang W; Sawyer WH
    Eur J Biochem; 2001 Mar; 268(6):1659-69. PubMed ID: 11248685
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Role of nanoparticle surface functionality in the disruption of model cell membranes.
    Moghadam BY; Hou WC; Corredor C; Westerhoff P; Posner JD
    Langmuir; 2012 Nov; 28(47):16318-26. PubMed ID: 22921268
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Membrane permeability of fructose-1,6-diphosphate in lipid vesicles and endothelial cells.
    Ehringer WD; Niu W; Chiang B; Wang OL; Gordon L; Chien S
    Mol Cell Biochem; 2000 Jul; 210(1-2):35-45. PubMed ID: 10976756
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Cell-induced leakage of liposome contents.
    Van Renswoude J; Hoekstra D
    Biochemistry; 1981 Feb; 20(3):540-6. PubMed ID: 7213593
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Effects of lipid composition on membrane permeabilization by sticholysin I and II, two cytolysins of the sea anemone Stichodactyla helianthus.
    Valcarcel CA; Dalla Serra M; Potrich C; Bernhart I; Tejuca M; Martinez D; Pazos F; Lanio ME; Menestrina G
    Biophys J; 2001 Jun; 80(6):2761-74. PubMed ID: 11371451
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Applying Fluorescence Correlation Spectroscopy to Investigate Peptide-Induced Membrane Disruption.
    Kristensen K; Henriksen JR; Andresen TL
    Methods Mol Biol; 2017; 1548():159-180. PubMed ID: 28013503
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Aminoglycoside antibiotics preferentially increase permeability in phosphoinositide-containing membranes: a study with carboxyfluorescein in liposomes.
    Au S; Weiner ND; Schacht J
    Biochim Biophys Acta; 1987 Aug; 902(1):80-6. PubMed ID: 3038190
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Gramicidin A disassembles large conductive clusters of its lysine-substituted derivatives in lipid membranes.
    Antonenko YN; Gluhov GS; Firsov AM; Pogozheva ID; Kovalchuk SI; Pechnikova EV; Kotova EA; Sokolova OS
    Phys Chem Chem Phys; 2015 Jul; 17(26):17461-70. PubMed ID: 26077982
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Structure of small actin-containing liposomes probed by atomic force microscopy: effect of actin concentration & liposome size.
    Li S; Palmer AF
    Langmuir; 2004 Sep; 20(19):7917-25. PubMed ID: 15350053
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Beta-sheet pore-forming peptides selected from a rational combinatorial library: mechanism of pore formation in lipid vesicles and activity in biological membranes.
    Rausch JM; Marks JR; Rathinakumar R; Wimley WC
    Biochemistry; 2007 Oct; 46(43):12124-39. PubMed ID: 17918962
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Kinetic pathway of antimicrobial peptide magainin 2-induced pore formation in lipid membranes.
    Tamba Y; Ariyama H; Levadny V; Yamazaki M
    J Phys Chem B; 2010 Sep; 114(37):12018-26. PubMed ID: 20799752
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Nucleation and growth of pores in 1,2-Dimyristoyl-sn-glycero-3-phosphocholine (DMPC) / cholesterol bilayer by antimicrobial peptides melittin, its mutants and cecropin P1.
    Lyu Y; Fitriyanti M; Narsimhan G
    Colloids Surf B Biointerfaces; 2019 Jan; 173():121-127. PubMed ID: 30278360
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Membrane Pore Formation by Peptides Studied by Fluorescence Techniques.
    Tatulian SA; Kandel N
    Methods Mol Biol; 2019; 2003():449-464. PubMed ID: 31218629
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Studies on the methodology of the carboxyfluorescein assay and on the mechanism of liposome stabilization by red blood cells in vitro.
    Lelkes PI; Tandeter HB
    Biochim Biophys Acta; 1982 Jun; 716(3):410-9. PubMed ID: 7115760
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Mechanisms of membrane protein insertion into liposomes during reconstitution procedures involving the use of detergents. 1. Solubilization of large unilamellar liposomes (prepared by reverse-phase evaporation) by triton X-100, octyl glucoside, and sodium cholate.
    Paternostre MT; Roux M; Rigaud JL
    Biochemistry; 1988 Apr; 27(8):2668-77. PubMed ID: 2840945
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Analysis of the perturbation of phospholipid model membranes by rhodanese and its presequence.
    Zardeneta G; Horowitz PM
    J Biol Chem; 1992 Dec; 267(34):24193-8. PubMed ID: 1447169
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Copper-responsive liposomes for triggered cargo release employing a picolinamide-lipid conjugate.
    Sagar R; Jaremba EA; Lou J; Best MD
    Org Biomol Chem; 2023 Feb; 21(5):955-959. PubMed ID: 36622111
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Fluorescence analysis of size distribution and mode of dye release from carboxyfluorescein-loaded vesicles: application to the study of complement-membrane interactions.
    Liu ZY; Solow R; Hu VW
    Biochim Biophys Acta; 1988 Nov; 945(2):253-62. PubMed ID: 3191124
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.