These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

197 related articles for article (PubMed ID: 28932847)

  • 1. Dichotomy between the band and hopping transport in organic crystals: insights from experiments.
    Yavuz I
    Phys Chem Chem Phys; 2017 Oct; 19(38):25819-25828. PubMed ID: 28932847
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Comprehensive approach to intrinsic charge carrier mobility in conjugated organic molecules, macromolecules, and supramolecular architectures.
    Saeki A; Koizumi Y; Aida T; Seki S
    Acc Chem Res; 2012 Aug; 45(8):1193-202. PubMed ID: 22676381
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Flexible Surface Hopping Approach to Model the Crossover from Hopping to Band-like Transport in Organic Crystals.
    Wang L; Beljonne D
    J Phys Chem Lett; 2013 Jun; 4(11):1888-94. PubMed ID: 26283125
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Carrier Induced Hopping to Band Conduction in Pentacene.
    Rani V; Kumar P; Sharma A; Yadav S; Singh B; Ray N; Ghosh S
    Sci Rep; 2019 Dec; 9(1):20193. PubMed ID: 31882781
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Role of intermolecular charge delocalization and its dimensionality in efficient band-like electron transport in crystalline 2,5-difluoro-7,7,8,8-tetracyanoquinodimethane (F
    Sosorev AY
    Phys Chem Chem Phys; 2017 Sep; 19(37):25478-25486. PubMed ID: 28900645
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Universal crossover from band to hopping conduction in molecular organic semiconductors.
    Schön JH; Kloc C; Batlogg B
    Phys Rev Lett; 2001 Apr; 86(17):3843-6. PubMed ID: 11329338
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A unified theory for charge-carrier transport in organic crystals.
    Cheng YC; Silbey RJ
    J Chem Phys; 2008 Mar; 128(11):114713. PubMed ID: 18361607
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Efficiently predicting directional carrier mobilities in organic materials with the Boltzmann transport equation.
    Knepp ZJ; Masso GB; Fredin LA
    J Chem Phys; 2023 Feb; 158(6):064704. PubMed ID: 36792516
    [TBL] [Abstract][Full Text] [Related]  

  • 9. n-Channel semiconductor materials design for organic complementary circuits.
    Usta H; Facchetti A; Marks TJ
    Acc Chem Res; 2011 Jul; 44(7):501-10. PubMed ID: 21615105
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Temperature-independent hole mobility of a smectic liquid-crystalline semiconductor based on band-like conduction.
    Funahashi M; Ishii T; Sonoda A
    Chemphyschem; 2013 Aug; 14(12):2750-8. PubMed ID: 23873808
    [TBL] [Abstract][Full Text] [Related]  

  • 11. How to calculate charge mobility in molecular materials from surface hopping non-adiabatic molecular dynamics - beyond the hopping/band paradigm.
    Carof A; Giannini S; Blumberger J
    Phys Chem Chem Phys; 2019 Dec; 21(48):26368-26386. PubMed ID: 31793569
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Improving the theoretical description of charge transport in organic crystals.
    da Cunha WF; de Brito SS; de Sousa LE; Enders BG; de Oliveira Neto PH
    J Mol Model; 2019 Mar; 25(3):83. PubMed ID: 30826977
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Hopping and band mobilities of pentacene, rubrene, and 2,7-dioctyl[1]benzothieno[3,2-b][1]benzothiophene (C8-BTBT) from first principle calculations.
    Kobayashi H; Kobayashi N; Hosoi S; Koshitani N; Murakami D; Shirasawa R; Kudo Y; Hobara D; Tokita Y; Itabashi M
    J Chem Phys; 2013 Jul; 139(1):014707. PubMed ID: 23822320
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Charge-transfer mobility and electrical conductivity of PANI as conjugated organic semiconductors.
    Zhang Y; Duan Y; Song L; Zheng D; Zhang M; Zhao G
    J Chem Phys; 2017 Sep; 147(11):114905. PubMed ID: 28938815
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Theoretical study on the charge transport in single crystals of TCNQ, F
    Ji LF; Fan JX; Zhang SF; Ren AM
    Phys Chem Chem Phys; 2018 Jan; 20(5):3784-3794. PubMed ID: 29349447
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Intrinsic charge-mobility in benzothieno[3,2-b][1]benzothiophene (BTBT) organic semiconductors is enhanced with long alkyl side-chains.
    Alkan M; Yavuz I
    Phys Chem Chem Phys; 2018 Jun; 20(23):15970-15979. PubMed ID: 29850708
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Band-like temperature dependence of mobility in a solution-processed organic semiconductor.
    Sakanoue T; Sirringhaus H
    Nat Mater; 2010 Sep; 9(9):736-40. PubMed ID: 20729848
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Charge transport in high mobility molecular semiconductors: classical models and new theories.
    Troisi A
    Chem Soc Rev; 2011 May; 40(5):2347-58. PubMed ID: 21409232
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Simulation of Temperature-Dependent Charge Transport in Organic Semiconductors with Various Degrees of Disorder.
    Heck A; Kranz JJ; Elstner M
    J Chem Theory Comput; 2016 Jul; 12(7):3087-96. PubMed ID: 27224054
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Crossover from hopping to band-like transport in crystalline organic semiconductors: The effect of shallow traps.
    Dong J; Wu C
    J Chem Phys; 2019 Jan; 150(4):044903. PubMed ID: 30709264
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.