These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

286 related articles for article (PubMed ID: 28932860)

  • 1. Immobilized enzymes: understanding enzyme - surface interactions at the molecular level.
    Hoarau M; Badieyan S; Marsh ENG
    Org Biomol Chem; 2017 Nov; 15(45):9539-9551. PubMed ID: 28932860
    [TBL] [Abstract][Full Text] [Related]  

  • 2. On the relationship between structure and catalytic effectiveness in solid surface-immobilized enzymes: Advances in methodology and the quest for a single-molecule perspective.
    Bolivar JM; Nidetzky B
    Biochim Biophys Acta Proteins Proteom; 2020 Feb; 1868(2):140333. PubMed ID: 31778816
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Enhanced enzyme stability through site-directed covalent immobilization.
    Wu JC; Hutchings CH; Lindsay MJ; Werner CJ; Bundy BC
    J Biotechnol; 2015 Jan; 193():83-90. PubMed ID: 25449015
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Molecular-Level Insights into Orientation-Dependent Changes in the Thermal Stability of Enzymes Covalently Immobilized on Surfaces.
    Ogorzalek TL; Wei S; Liu Y; Wang Q; Brooks CL; Chen Z; Marsh EN
    Langmuir; 2015 Jun; 31(22):6145-53. PubMed ID: 25973638
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Enzymes immobilized in mesoporous silica: a physical-chemical perspective.
    Carlsson N; Gustafsson H; Thörn C; Olsson L; Holmberg K; Åkerman B
    Adv Colloid Interface Sci; 2014 Mar; 205():339-60. PubMed ID: 24112562
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Simultaneous Observation of the Orientation and Activity of Surface-Immobilized Enzymes.
    Jasensky J; Ferguson K; Baria M; Zou X; McGinnis R; Kaneshiro A; Badieyan S; Wei S; Marsh ENG; Chen Z
    Langmuir; 2018 Aug; 34(31):9133-9140. PubMed ID: 29993252
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Fluorographene and Graphane as an Excellent Platform for Enzyme Biocatalysis.
    Hermanová S; Bouša D; Mazánek V; Sedmidubský D; Plutnar J; Pumera M; Sofer Z
    Chemistry; 2018 Nov; 24(63):16833-16839. PubMed ID: 30117202
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A new generation approach in enzyme immobilization: Organic-inorganic hybrid nanoflowers with enhanced catalytic activity and stability.
    Altinkaynak C; Tavlasoglu S; Özdemir N; Ocsoy I
    Enzyme Microb Technol; 2016 Nov; 93-94():105-112. PubMed ID: 27702469
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Molecular orientation of enzymes attached to surfaces through defined chemical linkages at the solid-liquid interface.
    Liu Y; Ogorzalek TL; Yang P; Schroeder MM; Marsh EN; Chen Z
    J Am Chem Soc; 2013 Aug; 135(34):12660-9. PubMed ID: 23883344
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Multi-point enzyme immobilization, surface chemistry, and novel platforms: a paradigm shift in biocatalyst design.
    Bilal M; Asgher M; Cheng H; Yan Y; Iqbal HMN
    Crit Rev Biotechnol; 2019 Mar; 39(2):202-219. PubMed ID: 30394121
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Polymer materials for enzyme immobilization and their application in bioreactors.
    Fang Y; Huang XJ; Chen PC; Xu ZK
    BMB Rep; 2011 Feb; 44(2):87-95. PubMed ID: 21345306
    [TBL] [Abstract][Full Text] [Related]  

  • 12. From protein engineering to immobilization: promising strategies for the upgrade of industrial enzymes.
    Singh RK; Tiwari MK; Singh R; Lee JK
    Int J Mol Sci; 2013 Jan; 14(1):1232-77. PubMed ID: 23306150
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Immobilization of glucoamylase on triazine-functionalized Fe
    Amirbandeh M; Taheri-Kafrani A
    Int J Biol Macromol; 2016 Dec; 93(Pt A):1183-1191. PubMed ID: 27693337
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Amphiphilic hollow carbonaceous microsphere-encapsulated enzymes: Facile immobilization and robust biocatalytic properties.
    Liu L; Sun Y; He L; Jiang L; Yang S
    Enzyme Microb Technol; 2015 Nov; 79-80():19-26. PubMed ID: 26320710
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Improvement of activity, thermo-stability and fruit juice clarification characteristics of fungal exo-polygalacturonase.
    Amin F; Bhatti HN; Bilal M; Asgher M
    Int J Biol Macromol; 2017 Feb; 95():974-984. PubMed ID: 27984141
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Immobilization of Enzymes in Protein Films.
    Sánchez-deAlcázar D; Liutkus M; Cortajarena AL
    Methods Mol Biol; 2020; 2100():211-226. PubMed ID: 31939126
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Reversible Supramolecular Surface Attachment of Enzyme-Polymer Conjugates for the Design of Biocatalytic Filtration Membranes.
    Moridi N; Corvini PF; Shahgaldian P
    Angew Chem Int Ed Engl; 2015 Dec; 54(49):14800-4. PubMed ID: 26461451
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Increasing the activity of immobilized enzymes with nanoparticle conjugation.
    Ding S; Cargill AA; Medintz IL; Claussen JC
    Curr Opin Biotechnol; 2015 Aug; 34():242-50. PubMed ID: 25957941
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Thermostable α-amylase immobilization: Enhanced stability and performance for starch biocatalysis.
    Kumar GS; Rather GM; Gurramkonda C; Reddy BR
    Biotechnol Appl Biochem; 2016; 63(1):57-66. PubMed ID: 25604037
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Immobilized biocatalytic process development and potential application in membrane separation: a review.
    Chakraborty S; Rusli H; Nath A; Sikder J; Bhattacharjee C; Curcio S; Drioli E
    Crit Rev Biotechnol; 2016; 36(1):43-58. PubMed ID: 25025272
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.