These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

307 related articles for article (PubMed ID: 28932987)

  • 21. An open-source model and solution method to predict co-contraction in the finger.
    MacIntosh AR; Keir PJ
    Comput Methods Biomech Biomed Engin; 2017 Oct; 20(13):1373-1381. PubMed ID: 28817976
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Surface electromyogram analysis of the direction of isometric torque generation by the first dorsal interosseous muscle.
    Zhou P; Suresh NL; Rymer WZ
    J Neural Eng; 2011 Jun; 8(3):036028. PubMed ID: 21566274
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Influence of nerve supply on hand electromyography coherence during a three-digit task.
    Pasluosta CF; Domalain MM; Fang Y; Yue GH; Li ZM
    J Electromyogr Kinesiol; 2013 Jun; 23(3):594-9. PubMed ID: 23410655
    [TBL] [Abstract][Full Text] [Related]  

  • 24. The effect of finger extensor mechanism on the flexor force during isometric tasks.
    Li ZM; Zatsiorsky VM; Latash ML
    J Biomech; 2001 Aug; 34(8):1097-102. PubMed ID: 11448702
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Isometric training with maximal co-contraction instruction does not increase co-activation during exercises against external resistances.
    Driss T; Serrau V; Behm DG; Lesne-Chabran E; Le Pellec-Muller A; Vandewalle H
    J Sports Sci; 2014; 32(1):60-9. PubMed ID: 23876029
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Training-related changes in the EMG-moment relationship during isometric contractions: Further evidence of improved control of muscle activation in strength-trained men?
    Amarantini D; Bru B
    J Electromyogr Kinesiol; 2015 Aug; 25(4):697-702. PubMed ID: 25908585
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Intermuscular coherence between homologous muscles during dynamic and static movement periods of bipedal squatting.
    Kenville R; Maudrich T; Vidaurre C; Maudrich D; Villringer A; Ragert P; Nikulin VV
    J Neurophysiol; 2020 Oct; 124(4):1045-1055. PubMed ID: 32816612
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Task-Dependent Intermuscular Motor Unit Synchronization between Medial and Lateral Vastii Muscles during Dynamic and Isometric Squats.
    Mohr M; Nann M; von Tscharner V; Eskofier B; Nigg BM
    PLoS One; 2015; 10(11):e0142048. PubMed ID: 26529604
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Intermuscular coherence contributions in synergistic muscles during pedaling.
    De Marchis C; Severini G; Castronovo AM; Schmid M; Conforto S
    Exp Brain Res; 2015 Jun; 233(6):1907-19. PubMed ID: 25821181
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Activation and intermuscular coherence of distal arm muscles during proximal muscle contraction.
    Lee SW; Landers K; Harris-Love ML
    Exp Brain Res; 2014 Mar; 232(3):739-52. PubMed ID: 24317552
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Visual information interacts with neuromuscular factors in the coordination of bimanual isometric force.
    Hu X; Loncharich M; Newell KM
    Exp Brain Res; 2011 Mar; 209(1):129-38. PubMed ID: 21188355
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Neuromuscular adjustments that constrain submaximal EMG amplitude at task failure of sustained isometric contractions.
    Dideriksen JL; Enoka RM; Farina D
    J Appl Physiol (1985); 2011 Aug; 111(2):485-94. PubMed ID: 21596915
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Muscle fatigue-induced enhancement of corticomuscular coherence following sustained submaximal isometric contraction of the tibialis anterior muscle.
    Ushiyama J; Katsu M; Masakado Y; Kimura A; Liu M; Ushiba J
    J Appl Physiol (1985); 2011 May; 110(5):1233-40. PubMed ID: 21393470
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Fatigue- and training-related changes in 'beta' intermuscular interactions between agonist muscles.
    Charissou C; Vigouroux L; Berton E; Amarantini D
    J Electromyogr Kinesiol; 2016 Apr; 27():52-9. PubMed ID: 26901383
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Bimanual force control differs between increment and decrement.
    Patel P; Zablocki V; Lodha N
    Neurosci Lett; 2019 May; 701():218-225. PubMed ID: 30844474
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Strength increases from the motor program: comparison of training with maximal voluntary and imagined muscle contractions.
    Yue G; Cole KJ
    J Neurophysiol; 1992 May; 67(5):1114-23. PubMed ID: 1597701
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Task goal and grip force dynamics.
    Jordan K; Newell KM
    Exp Brain Res; 2004 Jun; 156(4):451-7. PubMed ID: 14968275
    [TBL] [Abstract][Full Text] [Related]  

  • 38. EMG activation patterns during force production in precision grip. III. Synchronisation of single motor units.
    Huesler EJ; Maier MA; Hepp-Reymond MC
    Exp Brain Res; 2000 Oct; 134(4):441-55. PubMed ID: 11081826
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Aging and Strength Training Influence Knee Extensor Intermuscular Coherence During Low- and High-Force Isometric Contractions.
    Walker S; Avela J; Wikgren J; Meeusen R; Piitulainen H; Baker SN; Parviainen TM
    Front Physiol; 2018; 9():1933. PubMed ID: 30728782
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Impact of Targeted Assistance of Multiarticular Finger Musculotendons on the Coordination of Finger Muscles During Isometric Force Production.
    Lee SW; Vermillion BC; Geed S; Dromerick AW; Kamper DG
    IEEE Trans Neural Syst Rehabil Eng; 2018 Mar; 26(3):619-628. PubMed ID: 29522406
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 16.