BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

473 related articles for article (PubMed ID: 28933060)

  • 1. The Role of Brain in Energy Balance.
    Matafome P; Seiça R
    Adv Neurobiol; 2017; 19():33-48. PubMed ID: 28933060
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Is dopamine a physiologically relevant mediator of feeding behavior?
    Palmiter RD
    Trends Neurosci; 2007 Aug; 30(8):375-81. PubMed ID: 17604133
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Alterations in food intake by opioid and dopamine signaling pathways between the ventral tegmental area and the shell of the nucleus accumbens.
    MacDonald AF; Billington CJ; Levine AS
    Brain Res; 2004 Aug; 1018(1):78-85. PubMed ID: 15262208
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Hedonic Eating and the "Delicious Circle": From Lipid-Derived Mediators to Brain Dopamine and Back.
    Coccurello R; Maccarrone M
    Front Neurosci; 2018; 12():271. PubMed ID: 29740277
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The role of fatty acids and their endocannabinoid-like derivatives in the molecular regulation of appetite.
    Witkamp RF
    Mol Aspects Med; 2018 Dec; 64():45-67. PubMed ID: 29325757
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Homeostasis Meets Motivation in the Battle to Control Food Intake.
    Ferrario CR; Labouèbe G; Liu S; Nieh EH; Routh VH; Xu S; O'Connor EC
    J Neurosci; 2016 Nov; 36(45):11469-11481. PubMed ID: 27911750
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Brain regulation of energy balance and body weight.
    Rui L
    Rev Endocr Metab Disord; 2013 Dec; 14(4):387-407. PubMed ID: 23990408
    [TBL] [Abstract][Full Text] [Related]  

  • 8. New insights into the mechanisms underlying the effects of BDNF on eating behavior.
    Rios M
    Neuropsychopharmacology; 2011 Jan; 36(1):368-9. PubMed ID: 21116262
    [No Abstract]   [Full Text] [Related]  

  • 9. Inhibition of opioid systems in the hypothalamus as well as the mesolimbic area suppresses feeding behavior of mice.
    Ikeda H; Ardianto C; Yonemochi N; Yang L; Ohashi T; Ikegami M; Nagase H; Kamei J
    Neuroscience; 2015 Dec; 311():9-21. PubMed ID: 26454026
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Metabolic vs. hedonic obesity: a conceptual distinction and its clinical implications.
    Yu YH; Vasselli JR; Zhang Y; Mechanick JI; Korner J; Peterli R
    Obes Rev; 2015 Mar; 16(3):234-47. PubMed ID: 25588316
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Central and peripheral signaling mechanisms involved in endocannabinoid regulation of feeding: a perspective on the munchies.
    Sharkey KA; Pittman QJ
    Sci STKE; 2005 Mar; 2005(277):pe15. PubMed ID: 15798103
    [TBL] [Abstract][Full Text] [Related]  

  • 12. NAPE-PLD in the ventral tegmental area regulates reward events, feeding and energy homeostasis.
    Castel J; Li G; Onimus O; Leishman E; Cani PD; Bradshaw H; Mackie K; Everard A; Luquet S; Gangarossa G
    Mol Psychiatry; 2024 May; 29(5):1478-1490. PubMed ID: 38361126
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Identification of an endocannabinoid gut-brain vagal mechanism controlling food reward and energy homeostasis.
    Berland C; Castel J; Terrasi R; Montalban E; Foppen E; Martin C; Muccioli GG; Luquet S; Gangarossa G
    Mol Psychiatry; 2022 Apr; 27(4):2340-2354. PubMed ID: 35075269
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Food reward-sensitive interaction of ghrelin and opioid receptor pathways in mesolimbic dopamine system.
    Kawahara Y; Kaneko F; Yamada M; Kishikawa Y; Kawahara H; Nishi A
    Neuropharmacology; 2013 Apr; 67():395-402. PubMed ID: 23220294
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Ghrelin and food reward: the story of potential underlying substrates.
    Skibicka KP; Dickson SL
    Peptides; 2011 Nov; 32(11):2265-73. PubMed ID: 21621573
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Hypothalamic and brainstem neuronal circuits controlling homeostatic energy balance.
    Schneeberger M; Gomis R; Claret M
    J Endocrinol; 2014 Feb; 220(2):T25-46. PubMed ID: 24222039
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Regulation of the mesolimbic dopamine circuit by feeding peptides.
    Liu S; Borgland SL
    Neuroscience; 2015 Mar; 289():19-42. PubMed ID: 25583635
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Hypothalamic regulation of food intake and clinical therapeutic applications.
    Simpson KA; Martin NM; Bloom SR
    Arq Bras Endocrinol Metabol; 2009 Mar; 53(2):120-8. PubMed ID: 19466203
    [TBL] [Abstract][Full Text] [Related]  

  • 19. PYY modulation of cortical and hypothalamic brain areas predicts feeding behaviour in humans.
    Batterham RL; ffytche DH; Rosenthal JM; Zelaya FO; Barker GJ; Withers DJ; Williams SC
    Nature; 2007 Nov; 450(7166):106-9. PubMed ID: 17934448
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Neurosystems linking corticolimbic and hypothalamic pathways in energy balance: view from the Chair.
    Fulton S
    Int J Obes (Lond); 2009 Jun; 33 Suppl 2():S3-7. PubMed ID: 19528976
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 24.