BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

145 related articles for article (PubMed ID: 28933083)

  • 21. Optimal codons in Tremella fuciformis end in C/G, a strong difference with known Tremella species.
    Deng Y; Huang X; Ruan B; Xie B; van Peer AF; Jiang Y
    World J Microbiol Biotechnol; 2015 Nov; 31(11):1691-8. PubMed ID: 26253954
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Codon usage bias in phylum Actinobacteria: relevance to environmental adaptation and host pathogenicity.
    Lal D; Verma M; Behura SK; Lal R
    Res Microbiol; 2016 Oct; 167(8):669-677. PubMed ID: 27349345
    [TBL] [Abstract][Full Text] [Related]  

  • 23. [Comparative studies on codon usage bias of Ganoderma lucidum based on analysis of genomic and transcriptomic data].
    Zhu XX; Zhu YJ; Song JY; Sun C; Chen SL
    Yao Xue Xue Bao; 2014 Sep; 49(9):1340-5. PubMed ID: 25518336
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Promoter analysis of the Catharanthus roseus geraniol 10-hydroxylase gene involved in terpenoid indole alkaloid biosynthesis.
    Suttipanta N; Pattanaik S; Gunjan S; Xie CH; Littleton J; Yuan L
    Biochim Biophys Acta; 2007 Feb; 1769(2):139-48. PubMed ID: 17321612
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Differential codon adaptation between dsDNA and ssDNA phages in Escherichia coli.
    Chithambaram S; Prabhakaran R; Xia X
    Mol Biol Evol; 2014 Jun; 31(6):1606-17. PubMed ID: 24586046
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Involvement of nitric oxide signaling in mammalian Bax-induced terpenoid indole alkaloid production of Catharanthus roseus cells.
    Xu M; Dong J
    Sci China C Life Sci; 2007 Dec; 50(6):799-807. PubMed ID: 17914641
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Genome-Wide Analysis of Codon Usage Bias in EpichloĆ« festucae.
    Li X; Song H; Kuang Y; Chen S; Tian P; Li C; Nan Z
    Int J Mol Sci; 2016 Jul; 17(7):. PubMed ID: 27428961
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Enzymology of indole alkaloid biosynthesis in Catharanthus roseus.
    Misra N; Luthra R; Kumar S
    Indian J Biochem Biophys; 1996 Aug; 33(4):261-73. PubMed ID: 8936815
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Cloning, characterization and localization of a novel basic peroxidase gene from Catharanthus roseus.
    Kumar S; Dutta A; Sinha AK; Sen J
    FEBS J; 2007 Mar; 274(5):1290-303. PubMed ID: 17298442
    [TBL] [Abstract][Full Text] [Related]  

  • 30. An protocol for genetic transformation of Catharanthus roseus by Agrobacterium rhizogenes A4.
    Zhou ML; Zhu XM; Shao JR; Wu YM; Tang YX
    Appl Biochem Biotechnol; 2012 Apr; 166(7):1674-84. PubMed ID: 22328251
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Artemisinic Acid Serves as a Novel ORCA3 Inducer to Enhance Biosynthesis of Terpenoid Indole Alkaloids in Catharanthus roseus Cambial Meristematic Cells.
    Wang M; Zi J; Zhu J; Chen S; Wang P; Song L; Yu R
    Nat Prod Commun; 2016 Jun; 11(6):715-7. PubMed ID: 27534099
    [TBL] [Abstract][Full Text] [Related]  

  • 32. The codon Adaptation Index--a measure of directional synonymous codon usage bias, and its potential applications.
    Sharp PM; Li WH
    Nucleic Acids Res; 1987 Feb; 15(3):1281-95. PubMed ID: 3547335
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Gene expression, nucleotide composition and codon usage bias of genes associated with human Y chromosome.
    Choudhury MN; Uddin A; Chakraborty S
    Genetica; 2017 Jun; 145(3):295-305. PubMed ID: 28421323
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Catharanthus roseus mitogen-activated protein kinase 3 confers UV and heat tolerance to Saccharomyces cerevisiae.
    Raina SK; Wankhede DP; Sinha AK
    Plant Signal Behav; 2013 Jan; 8(1):e22716. PubMed ID: 23221751
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Screening and kinetic studies of catharanthine and ajmalicine accumulation and their correlation with growth biomass in Catharanthus roseus hairy roots.
    Benyammi R; Paris C; Khelifi-Slaoui M; Zaoui D; Belabbassi O; Bakiri N; Meriem Aci M; Harfi B; Malik S; Makhzoum A; Desobry S; Khelifi L
    Pharm Biol; 2016 Oct; 54(10):2033-43. PubMed ID: 26983347
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Genetic engineering approach using early Vinca alkaloid biosynthesis genes led to increased tryptamine and terpenoid indole alkaloids biosynthesis in differentiating cultures of Catharanthus roseus.
    Sharma A; Verma P; Mathur A; Mathur AK
    Protoplasma; 2018 Jan; 255(1):425-435. PubMed ID: 28808798
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Transcriptome Analysis of Core Dinoflagellates Reveals a Universal Bias towards "GC" Rich Codons.
    Williams E; Place A; Bachvaroff T
    Mar Drugs; 2017 Apr; 15(5):. PubMed ID: 28448468
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Synonymous codon usage in Zea mays L. nuclear genes is varied by levels of C and G-ending codons.
    Fennoy SL; Bailey-Serres J
    Nucleic Acids Res; 1993 Nov; 21(23):5294-300. PubMed ID: 8265340
    [TBL] [Abstract][Full Text] [Related]  

  • 39. 7-deoxyloganetic acid synthase catalyzes a key 3 step oxidation to form 7-deoxyloganetic acid in Catharanthus roseus iridoid biosynthesis.
    Salim V; Wiens B; Masada-Atsumi S; Yu F; De Luca V
    Phytochemistry; 2014 May; 101():23-31. PubMed ID: 24594312
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Heteromeric and homomeric geranyl diphosphate synthases from Catharanthus roseus and their role in monoterpene indole alkaloid biosynthesis.
    Rai A; Smita SS; Singh AK; Shanker K; Nagegowda DA
    Mol Plant; 2013 Sep; 6(5):1531-49. PubMed ID: 23543438
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.