These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
215 related articles for article (PubMed ID: 28933144)
1. Colorimetric Sensor Array Based on Gold Nanoparticles with Diverse Surface Charges for Microorganisms Identification. Li B; Li X; Dong Y; Wang B; Li D; Shi Y; Wu Y Anal Chem; 2017 Oct; 89(20):10639-10643. PubMed ID: 28933144 [TBL] [Abstract][Full Text] [Related]
2. Colorimetric sensor array with unmodified noble metal nanoparticles for naked-eye detection of proteins and bacteria. Li D; Dong Y; Li B; Wu Y; Wang K; Zhang S Analyst; 2015 Nov; 140(22):7672-7. PubMed ID: 26446513 [TBL] [Abstract][Full Text] [Related]
3. A Rapid Colorimetric Sensor of Clenbuterol Based on Cysteamine-Modified Gold Nanoparticles. Kang J; Zhang Y; Li X; Miao L; Wu A ACS Appl Mater Interfaces; 2016 Jan; 8(1):1-5. PubMed ID: 26673452 [TBL] [Abstract][Full Text] [Related]
4. Colorimetric sensor array for protein discrimination based on different DNA chain length-dependent gold nanoparticles aggregation. Wei X; Wang Y; Zhao Y; Chen Z Biosens Bioelectron; 2017 Nov; 97():332-337. PubMed ID: 28623815 [TBL] [Abstract][Full Text] [Related]
5. In situ colorimetric detection of glyphosate on plant tissues using cysteamine-modified gold nanoparticles. Tu Q; Yang T; Qu Y; Gao S; Zhang Z; Zhang Q; Wang Y; Wang J; He L Analyst; 2019 Mar; 144(6):2017-2025. PubMed ID: 30702090 [TBL] [Abstract][Full Text] [Related]
6. Cationic polymer-based plasmonic sensor array that discriminates proteins. Xi H; Li X; Liu Q; Chen Z Analyst; 2018 Nov; 143(22):5578-5582. PubMed ID: 30311609 [TBL] [Abstract][Full Text] [Related]
7. A low pH-based rapid and direct colorimetric sensing of bacteria using unmodified gold nanoparticles. Du J; Yu Z; Hu Z; Chen J; Zhao J; Bai Y J Microbiol Methods; 2021 Jan; 180():106110. PubMed ID: 33271208 [TBL] [Abstract][Full Text] [Related]
8. Colorimetric sensor array based on gold nanoparticles and amino acids for identification of toxic metal ions in water. Sener G; Uzun L; Denizli A ACS Appl Mater Interfaces; 2014; 6(21):18395-400. PubMed ID: 25330256 [TBL] [Abstract][Full Text] [Related]
9. Colorimetric detection of melamine in complex matrices based on cysteamine-modified gold nanoparticles. Liang X; Wei H; Cui Z; Deng J; Zhang Z; You X; Zhang XE Analyst; 2011 Jan; 136(1):179-83. PubMed ID: 20877886 [TBL] [Abstract][Full Text] [Related]
10. Gold nanoparticles stabilized with four kinds of amino acid-derived carbon dots for colorimetric and visual discrimination of proteins and microorganisms. Lin X; Chen X Mikrochim Acta; 2019 Jul; 186(8):513. PubMed ID: 31280372 [TBL] [Abstract][Full Text] [Related]
11. Cysteamine-Modified Gold Nanoparticles as a Colorimetric Sensor for the Rapid Detection of Gentamicin. Gukowsky JC; Tan C; Han Z; He L J Food Sci; 2018 Jun; 83(6):1631-1638. PubMed ID: 29786853 [TBL] [Abstract][Full Text] [Related]
12. A simple and sensitive method for visual detection of heparin using positively-charged gold nanoparticles as colorimetric probes. Cao R; Li B Chem Commun (Camb); 2011 Mar; 47(10):2865-7. PubMed ID: 21246153 [TBL] [Abstract][Full Text] [Related]
13. Colorimetric sensor assay for discrimination of proteins based on exonuclease I-triggered aggregation of DNA-functionalized gold nanoparticles. Jia F; Liu Q; Wei W; Chen Z Analyst; 2019 Aug; 144(16):4865-4870. PubMed ID: 31297492 [TBL] [Abstract][Full Text] [Related]
14. DNA-Catalytically Active Gold Nanoparticle Conjugates-Based Colorimetric Multidimensional Sensor Array for Protein Discrimination. Wei X; Chen Z; Tan L; Lou T; Zhao Y Anal Chem; 2017 Jan; 89(1):556-559. PubMed ID: 27966888 [TBL] [Abstract][Full Text] [Related]
15. A dual-channel visual sensing system for recognition of multiple metal ions. Song X; Chen X; Liang Z; Xu D; Liang Y Colloids Surf B Biointerfaces; 2022 Aug; 216():112558. PubMed ID: 35567805 [TBL] [Abstract][Full Text] [Related]
16. Simple colorimetric sensing of trace bleomycin using unmodified gold nanoparticles. Li F; Feng Y; Zhao C; Tang B Biosens Bioelectron; 2011 Jul; 26(11):4628-31. PubMed ID: 21664122 [TBL] [Abstract][Full Text] [Related]
17. A Colorimetric Sensor for the Visual Detection of Azodicarbonamide in Flour Based on Azodicarbonamide-Induced Anti-Aggregation of Gold Nanoparticles. Chen Z; Chen L; Lin L; Wu Y; Fu F ACS Sens; 2018 Oct; 3(10):2145-2151. PubMed ID: 30239191 [TBL] [Abstract][Full Text] [Related]
18. Colorimetric sensor for cysteine in human urine based on novel gold nanoparticles. Zhang Y; Jiang J; Li M; Gao P; Zhou Y; Zhang G; Shuang S; Dong C Talanta; 2016 Dec; 161():520-527. PubMed ID: 27769441 [TBL] [Abstract][Full Text] [Related]
19. An operationally simple colorimetric assay of hyaluronidase activity using cationic gold nanoparticles. Kim JW; Kim JH; Chung SJ; Chung BH Analyst; 2009 Jul; 134(7):1291-3. PubMed ID: 19562190 [TBL] [Abstract][Full Text] [Related]
20. New application of a traditional method: colorimetric sensor array for reducing sugars based on the in-situ formation of core-shell gold nanorod-coated silver nanoparticles by the traditional Tollens reaction. Zhang X; Wang Z; Liu Z; Liu B; Wu R; Chen Z; Zuo X Mikrochim Acta; 2021 Mar; 188(4):142. PubMed ID: 33774720 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]