BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

445 related articles for article (PubMed ID: 28933243)

  • 21. Multifaceted remodeling by vitamin C boosts sensitivity of Mycobacterium tuberculosis subpopulations to combination treatment by anti-tubercular drugs.
    Sikri K; Duggal P; Kumar C; Batra SD; Vashist A; Bhaskar A; Tripathi K; Sethi T; Singh A; Tyagi JS
    Redox Biol; 2018 May; 15():452-466. PubMed ID: 29413958
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Latent Tuberculosis Infection (LTBI) and Its Potential Targets: An Investigation into Dormant Phase Pathogens.
    Gutti G; Arya K; Singh SK
    Mini Rev Med Chem; 2019; 19(19):1627-1642. PubMed ID: 31241015
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Potential Drug Targets in Mycobacterial Cell Wall: Non-Lipid Perspective.
    Das S; Hameed S; Fatima Z
    Curr Drug Discov Technol; 2020; 17(2):147-153. PubMed ID: 29875004
    [TBL] [Abstract][Full Text] [Related]  

  • 24. New Approaches and Therapeutic Options for Mycobacterium tuberculosis in a Dormant State.
    Caño-Muñiz S; Anthony R; Niemann S; Alffenaar JC
    Clin Microbiol Rev; 2018 Jan; 31(1):. PubMed ID: 29187395
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Selective Killing of Dormant Mycobacterium tuberculosis by Marine Natural Products.
    Rodrigues Felix C; Gupta R; Geden S; Roberts J; Winder P; Pomponi SA; Diaz MC; Reed JK; Wright AE; Rohde KH
    Antimicrob Agents Chemother; 2017 Aug; 61(8):. PubMed ID: 28607021
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Latent tuberculosis: interaction of virulence factors in Mycobacterium tuberculosis.
    Sundararajan S; Muniyan R
    Mol Biol Rep; 2021 Aug; 48(8):6181-6196. PubMed ID: 34351540
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Type-II NADH Dehydrogenase (NDH-2): a promising therapeutic target for antitubercular and antibacterial drug discovery.
    Sellamuthu S; Singh M; Kumar A; Singh SK
    Expert Opin Ther Targets; 2017 Jun; 21(6):559-570. PubMed ID: 28472892
    [TBL] [Abstract][Full Text] [Related]  

  • 28. TB drug development: immunology at the table.
    Nathan C; Barry CE
    Immunol Rev; 2015 Mar; 264(1):308-18. PubMed ID: 25703568
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Replication rates of Mycobacterium tuberculosis in human macrophages do not correlate with mycobacterial antibiotic susceptibility.
    Raffetseder J; Pienaar E; Blomgran R; Eklund D; Patcha Brodin V; Andersson H; Welin A; Lerm M
    PLoS One; 2014; 9(11):e112426. PubMed ID: 25386849
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Fighting tuberculosis by drugs targeting nonreplicating
    Iacobino A; Piccaro G; Giannoni F; Mustazzolu A; Fattorini L
    Int J Mycobacteriol; 2017; 6(3):213-221. PubMed ID: 28776518
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Harnessing Biological Insight to Accelerate Tuberculosis Drug Discovery.
    de Wet TJ; Warner DF; Mizrahi V
    Acc Chem Res; 2019 Aug; 52(8):2340-2348. PubMed ID: 31361123
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Targeting isocitrate lyase for the treatment of latent tuberculosis.
    Bhusal RP; Bashiri G; Kwai BXC; Sperry J; Leung IKH
    Drug Discov Today; 2017 Jul; 22(7):1008-1016. PubMed ID: 28458043
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Hypobiosis of Mycobacteria: Biochemical Aspects.
    Shleeva MO; Kaprelyants AS
    Biochemistry (Mosc); 2023 Jan; 88(Suppl 1):S52-S74. PubMed ID: 37069114
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Dormancy models for Mycobacterium tuberculosis: A minireview.
    Alnimr AM
    Braz J Microbiol; 2015; 46(3):641-7. PubMed ID: 26413043
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Plants in our combating strategies against Mycobacterium tuberculosis: progress made and obstacles met.
    Gupta VK; Kumar MM; Bisht D; Kaushik A
    Pharm Biol; 2017 Dec; 55(1):1536-1544. PubMed ID: 28385088
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Dormant ovoid cells of Mycobacterium tuberculosis are formed in response to gradual external acidification.
    Shleeva MO; Kudykina YK; Vostroknutova GN; Suzina NE; Mulyukin AL; Kaprelyants AS
    Tuberculosis (Edinb); 2011 Mar; 91(2):146-54. PubMed ID: 21262587
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Genetic factors affecting storage and utilization of lipids during dormancy in
    Sturm A; Sun P; Avila-Pacheco J; Clatworthy AE; Bloom-Ackermann Z; Wuo MG; Gomez JE; Jin S; Clish CB; Kiessling LL; Hung DT
    mBio; 2024 Feb; 15(2):e0320823. PubMed ID: 38236034
    [No Abstract]   [Full Text] [Related]  

  • 38. Perspectives on tuberculosis pathogenesis and discovery of anti- tubercular drugs.
    Ntie-Kang F; Yong JN; Owono Owono LC; Sippl W; Megnassan E
    Curr Med Chem; 2014; 21(30):3466-77. PubMed ID: 25005178
    [TBL] [Abstract][Full Text] [Related]  

  • 39. New tricks for old dogs: countering antibiotic resistance in tuberculosis with host-directed therapeutics.
    Hawn TR; Shah JA; Kalman D
    Immunol Rev; 2015 Mar; 264(1):344-62. PubMed ID: 25703571
    [TBL] [Abstract][Full Text] [Related]  

  • 40. New approaches to tuberculosis--novel drugs based on drug targets related to toll-like receptors in macrophages.
    Tomioka H
    Curr Pharm Des; 2014; 20(27):4404-17. PubMed ID: 24245765
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 23.