These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
298 related articles for article (PubMed ID: 28933632)
1. Influence of light and food on the circadian clock in liver of rainbow trout, Oncorhynchus mykiss. Hernández-Pérez J; Míguez JM; Naderi F; Soengas JL; López-Patiño MA Chronobiol Int; 2017; 34(9):1259-1272. PubMed ID: 28933632 [TBL] [Abstract][Full Text] [Related]
2. Daily rhythmic expression patterns of clock1a, bmal1, and per1 genes in retina and hypothalamus of the rainbow trout, Oncorhynchus mykiss. Patiño MA; Rodríguez-Illamola A; Conde-Sieira M; Soengas JL; Míguez JM Chronobiol Int; 2011 May; 28(5):381-9. PubMed ID: 21721853 [TBL] [Abstract][Full Text] [Related]
3. Involvement of cortisol and sirtuin1 during the response to stress of hypothalamic circadian system and food intake-related peptides in rainbow trout, Oncorhynchus mykiss. Naderi F; Hernández-Pérez J; Chivite M; Soengas JL; Míguez JM; López-Patiño MA Chronobiol Int; 2018 Aug; 35(8):1122-1141. PubMed ID: 29737878 [TBL] [Abstract][Full Text] [Related]
4. Daily rhythms in activity and mRNA abundance of enzymes involved in glucose and lipid metabolism in liver of rainbow trout, Oncorhynchus mykiss. Influence of light and food availability. Hernández-Pérez J; Míguez JM; Librán-Pérez M; Otero-Rodiño C; Naderi F; Soengas JL; López-Patiño MA Chronobiol Int; 2015; 32(10):1391-408. PubMed ID: 26587750 [TBL] [Abstract][Full Text] [Related]
5. Differential patterns in the periodicity and dynamics of clock gene expression in mouse liver and stomach. Mazzoccoli G; Francavilla M; Pazienza V; Benegiamo G; Piepoli A; Vinciguerra M; Giuliani F; Yamamoto T; Takumi T Chronobiol Int; 2012 Dec; 29(10):1300-11. PubMed ID: 23131081 [TBL] [Abstract][Full Text] [Related]
6. Ontogeny of the circadian system during embryogenesis in rainbow trout (Oncorhynchus mykyss) and the effect of prolonged exposure to continuous illumination on daily rhythms of per1, clock, and aanat2 expression. Davie A; Sanchez JA; Vera LM; Sanchez-Vazquez J; Migaud H Chronobiol Int; 2011 Apr; 28(3):177-86. PubMed ID: 21452914 [TBL] [Abstract][Full Text] [Related]
7. Light and feeding entrainment of the molecular circadian clock in a marine teleost (Sparus aurata). Vera LM; Negrini P; Zagatti C; Frigato E; Sánchez-Vázquez FJ; Bertolucci C Chronobiol Int; 2013 Jun; 30(5):649-61. PubMed ID: 23688119 [TBL] [Abstract][Full Text] [Related]
8. Hepatic, duodenal, and colonic circadian clocks differ in their persistence under conditions of constant light and in their entrainment by restricted feeding. Polidarová L; Sládek M; Soták M; Pácha J; Sumová A Chronobiol Int; 2011 Apr; 28(3):204-15. PubMed ID: 21452916 [TBL] [Abstract][Full Text] [Related]
9. Developmental effects of constant light on circadian behaviour and gene expressions in zebra finches: Insights into mechanisms of metabolic adaptation to aperiodic environment in diurnal animals. Prabhat A; Malik I; Jha NA; Bhardwaj SK; Kumar V J Photochem Photobiol B; 2020 Oct; 211():111995. PubMed ID: 32836050 [TBL] [Abstract][Full Text] [Related]
10. Light- and clock-control of genes involved in detoxification. Carmona-Antoñanzas G; Santi M; Migaud H; Vera LM Chronobiol Int; 2017; 34(8):1026-1041. PubMed ID: 28617195 [TBL] [Abstract][Full Text] [Related]
12. Feeding time synchronizes clock gene rhythmic expression in brain and liver of goldfish (Carassius auratus). Feliciano A; Vivas Y; de Pedro N; Delgado MJ; Velarde E; Isorna E J Biol Rhythms; 2011 Feb; 26(1):24-33. PubMed ID: 21252363 [TBL] [Abstract][Full Text] [Related]
13. Circadian expression of clock and putative clock-controlled genes in skeletal muscle of the zebrafish. Amaral IP; Johnston IA Am J Physiol Regul Integr Comp Physiol; 2012 Jan; 302(1):R193-206. PubMed ID: 22031781 [TBL] [Abstract][Full Text] [Related]
14. REV-ERBα and the clock gene machinery in mouse peripheral tissues: a possible role as a synchronizing hinge. Mazzoccoli G; Cai Y; Liu S; Francavilla M; Giuliani F; Piepoli A; Pazienza V; Vinciguerra M; Yamamoto T; Takumi T J Biol Regul Homeost Agents; 2012; 26(2):265-76. PubMed ID: 22824754 [TBL] [Abstract][Full Text] [Related]
15. The circadian clock machinery during early development of Senegalese sole (Solea senegalensis): effects of constant light and dark conditions. Martín-Robles AJ; Aliaga-Guerrero M; Whitmore D; Pendón C; Muñoz-Cueto JA Chronobiol Int; 2012 Nov; 29(9):1195-205. PubMed ID: 23003212 [TBL] [Abstract][Full Text] [Related]
16. Diurnal rhythmicity of the canonical clock genes Per1, Per2 and Bmal1 in the rat adrenal gland is unaltered after hypophysectomy. Fahrenkrug J; Hannibal J; Georg B J Neuroendocrinol; 2008 Mar; 20(3):323-9. PubMed ID: 18208549 [TBL] [Abstract][Full Text] [Related]
17. Differential effects of transient constant light-dark conditions on daily rhythms of Period and Clock transcripts during Senegalese sole metamorphosis. Martín-Robles ÁJ; Whitmore D; Pendón C; Muñoz-Cueto JA Chronobiol Int; 2013 Jun; 30(5):699-710. PubMed ID: 23713834 [TBL] [Abstract][Full Text] [Related]
18. Asymmetric expression level of clock genes in left vs. right nasal mucosa in humans with and without allergies and in rats: Circadian characteristics and possible contribution to nasal cycle. Kim HK; Kim HJ; Kim JH; Kim TH; Lee SH PLoS One; 2018; 13(3):e0194018. PubMed ID: 29534090 [TBL] [Abstract][Full Text] [Related]
19. Dissecting Daily and Circadian Expression Rhythms of Clock-Controlled Genes in Human Blood. Lech K; Ackermann K; Revell VL; Lao O; Skene DJ; Kayser M J Biol Rhythms; 2016 Feb; 31(1):68-81. PubMed ID: 26527095 [TBL] [Abstract][Full Text] [Related]
20. Indirect effects of glucagon-like peptide-1 receptor agonist exendin-4 on the peripheral circadian clocks in mice. Ando H; Ushijima K; Fujimura A PLoS One; 2013; 8(11):e81119. PubMed ID: 24260546 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]