BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

378 related articles for article (PubMed ID: 28933656)

  • 1. Induction of RNAi Responses by Short Left-Handed Hairpin RNAi Triggers.
    Hagopian JC; Hamil AS; van den Berg A; Meade BR; Eguchi A; Palm-Apergi C; Dowdy SF
    Nucleic Acid Ther; 2017 Oct; 27(5):260-271. PubMed ID: 28933656
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Passenger-strand cleavage facilitates assembly of siRNA into Ago2-containing RNAi enzyme complexes.
    Matranga C; Tomari Y; Shin C; Bartel DP; Zamore PD
    Cell; 2005 Nov; 123(4):607-20. PubMed ID: 16271386
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Multiple sensors ensure guide strand selection in human RNAi pathways.
    Noland CL; Doudna JA
    RNA; 2013 May; 19(5):639-48. PubMed ID: 23531496
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mechanism and Function of Antiviral RNA Interference in Mice.
    Han Q; Chen G; Wang J; Jee D; Li WX; Lai EC; Ding SW
    mBio; 2020 Aug; 11(4):. PubMed ID: 32753500
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Argonaute2 cleaves the anti-guide strand of siRNA during RISC activation.
    Rand TA; Petersen S; Du F; Wang X
    Cell; 2005 Nov; 123(4):621-9. PubMed ID: 16271385
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Viral RNAi suppressor reversibly binds siRNA to outcompete Dicer and RISC via multiple turnover.
    Rawlings RA; Krishnan V; Walter NG
    J Mol Biol; 2011 Apr; 408(2):262-76. PubMed ID: 21354178
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Investigation of Strand-Selective Interaction of SNA-Modified siRNA with AGO2-MID.
    Kamiya Y; Takeyama Y; Mizuno T; Satoh F; Asanuma H
    Int J Mol Sci; 2020 Jul; 21(15):. PubMed ID: 32717920
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mechanistic insights on the Dicer-independent AGO2-mediated processing of AgoshRNAs.
    Liu YP; Karg M; Harwig A; Herrera-Carrillo E; Jongejan A; van Kampen A; Berkhout B
    RNA Biol; 2015; 12(1):92-100. PubMed ID: 25826416
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Relative Quantification of siRNA Strand Loading into Ago2 for Design of Highly Active siRNAs.
    Angart PA; Adu-Berchie K; Carlson RJ; Vocelle DB; Chan C; Walton SP
    Methods Mol Biol; 2019; 1974():41-56. PubMed ID: 31098994
    [TBL] [Abstract][Full Text] [Related]  

  • 10. C3PO, an endoribonuclease that promotes RNAi by facilitating RISC activation.
    Liu Y; Ye X; Jiang F; Liang C; Chen D; Peng J; Kinch LN; Grishin NV; Liu Q
    Science; 2009 Aug; 325(5941):750-3. PubMed ID: 19661431
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Chromatin-associated RNA interference components contribute to transcriptional regulation in Drosophila.
    Cernilogar FM; Onorati MC; Kothe GO; Burroughs AM; Parsi KM; Breiling A; Lo Sardo F; Saxena A; Miyoshi K; Siomi H; Siomi MC; Carninci P; Gilmour DS; Corona DF; Orlando V
    Nature; 2011 Nov; 480(7377):391-5. PubMed ID: 22056986
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Conversion of pre-RISC to holo-RISC by Ago2 during assembly of RNAi complexes.
    Kim K; Lee YS; Carthew RW
    RNA; 2007 Jan; 13(1):22-9. PubMed ID: 17123955
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Dicer-independent processing of short hairpin RNAs.
    Liu YP; Schopman NC; Berkhout B
    Nucleic Acids Res; 2013 Apr; 41(6):3723-33. PubMed ID: 23376931
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Antiviral RNA interference in mammalian cells.
    Maillard PV; Ciaudo C; Marchais A; Li Y; Jay F; Ding SW; Voinnet O
    Science; 2013 Oct; 342(6155):235-8. PubMed ID: 24115438
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Key elements of the RNAi pathway are regulated by hepatitis B virus replication and HBx acts as a viral suppressor of RNA silencing.
    Chinnappan M; Singh AK; Kakumani PK; Kumar G; Rooge SB; Kumari A; Varshney A; Rastogi A; Singh AK; Sarin SK; Malhotra P; Mukherjee SK; Bhatnagar RK
    Biochem J; 2014 Sep; 462(2):347-58. PubMed ID: 24902849
    [TBL] [Abstract][Full Text] [Related]  

  • 16. siRNA potency enhancement via chemical modifications of nucleotide bases at the 5'-end of the siRNA guide strand.
    Shinohara F; Oashi T; Harumoto T; Nishikawa T; Takayama Y; Miyagi H; Takahashi Y; Nakajima T; Sawada T; Koda Y; Makino A; Sato A; Hamaguchi K; Suzuki M; Yamamoto J; Tomari Y; Saito JI
    RNA; 2021 Feb; 27(2):163-173. PubMed ID: 33177188
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Processing of
    Shiromoto Y; Sakurai M; Qu H; Kossenkov AV; Nishikura K
    RNA; 2020 Dec; 26(12):1801-1814. PubMed ID: 32817447
    [TBL] [Abstract][Full Text] [Related]  

  • 18. DICER-ARGONAUTE2 complex in continuous fluorogenic assays of RNA interference enzymes.
    Bernard MA; Wang L; Tachado SD
    PLoS One; 2015; 10(3):e0120614. PubMed ID: 25793518
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Knockdown of RNA Interference Pathway Genes in Western Corn Rootworms (Diabrotica virgifera virgifera Le Conte) Demonstrates a Possible Mechanism of Resistance to Lethal dsRNA.
    VĂ©lez AM; Khajuria C; Wang H; Narva KE; Siegfried BD
    PLoS One; 2016; 11(6):e0157520. PubMed ID: 27310918
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mechanistic analysis of the enhanced RNAi activity by 6-mCEPh-purine at the 5' end of the siRNA guide strand.
    Brechin V; Shinohara F; Saito JI; Seitz H; Tomari Y
    RNA; 2021 Feb; 27(2):151-162. PubMed ID: 33177187
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 19.