BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

381 related articles for article (PubMed ID: 28933656)

  • 21. Determination of the role of DDX3 a factor involved in mammalian RNAi pathway using an shRNA-expression library.
    Kasim V; Wu S; Taira K; Miyagishi M
    PLoS One; 2013; 8(3):e59445. PubMed ID: 23527197
    [TBL] [Abstract][Full Text] [Related]  

  • 22. RNA Interference-Mediated Gene Silencing by Branched Tripodal RNAs Does Not Require Dicer Processing.
    Kim Y; Kang YG; Choe JY; Lee D; Shin C; Hong SW; Lee DK
    Nucleic Acid Ther; 2018 Feb; 28(1):44-49. PubMed ID: 29195056
    [TBL] [Abstract][Full Text] [Related]  

  • 23. A virus-encoded inhibitor that blocks RNA interference in mammalian cells.
    Sullivan CS; Ganem D
    J Virol; 2005 Jun; 79(12):7371-9. PubMed ID: 15919892
    [TBL] [Abstract][Full Text] [Related]  

  • 24. A forward genetic screen to study mammalian RNA interference: essential role of RNase IIIa domain of Dicer1 in 3' strand cleavage of dsRNA in vivo.
    Ohishi K; Nakano T
    FEBS J; 2012 Mar; 279(5):832-43. PubMed ID: 22221880
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Right- and left-loop short shRNAs have distinct and unusual mechanisms of gene silencing.
    Dallas A; Ilves H; Ge Q; Kumar P; Shorenstein J; Kazakov SA; Cuellar TL; McManus MT; Behlke MA; Johnston BH
    Nucleic Acids Res; 2012 Oct; 40(18):9255-71. PubMed ID: 22810205
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Analysis of AgoshRNA maturation and loading into Ago2.
    Harwig A; Kruize Z; Yang Z; Restle T; Berkhout B
    PLoS One; 2017; 12(8):e0183269. PubMed ID: 28809941
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Characterization of RNA interference in an Anopheles gambiae cell line.
    Hoa NT; Keene KM; Olson KE; Zheng L
    Insect Biochem Mol Biol; 2003 Sep; 33(9):949-57. PubMed ID: 12915186
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Human RISC couples microRNA biogenesis and posttranscriptional gene silencing.
    Gregory RI; Chendrimada TP; Cooch N; Shiekhattar R
    Cell; 2005 Nov; 123(4):631-40. PubMed ID: 16271387
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Structure of the Dicer-2-R2D2 heterodimer bound to a small RNA duplex.
    Yamaguchi S; Naganuma M; Nishizawa T; Kusakizako T; Tomari Y; Nishimasu H; Nureki O
    Nature; 2022 Jul; 607(7918):393-398. PubMed ID: 35768503
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Defining fundamental steps in the assembly of the Drosophila RNAi enzyme complex.
    Iwasaki S; Sasaki HM; Sakaguchi Y; Suzuki T; Tadakuma H; Tomari Y
    Nature; 2015 May; 521(7553):533-6. PubMed ID: 25822791
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The Nucleocapsid Protein of Coronaviruses Acts as a Viral Suppressor of RNA Silencing in Mammalian Cells.
    Cui L; Wang H; Ji Y; Yang J; Xu S; Huang X; Wang Z; Qin L; Tien P; Zhou X; Guo D; Chen Y
    J Virol; 2015 Sep; 89(17):9029-43. PubMed ID: 26085159
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Probing the shRNA characteristics that hinder Dicer recognition and consequently allow Ago-mediated processing and AgoshRNA activity.
    Herrera-Carrillo E; Harwig A; Liu YP; Berkhout B
    RNA; 2014 Sep; 20(9):1410-8. PubMed ID: 25035295
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Abrogation of DNA vector-based RNAi during apoptosis in mammalian cells due to caspase-mediated cleavage and inactivation of Dicer-1.
    Ghodgaonkar MM; Shah RG; Kandan-Kulangara F; Affar EB; Qi HH; Wiemer E; Shah GM
    Cell Death Differ; 2009 Jun; 16(6):858-68. PubMed ID: 19229243
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Ribozyme-enhanced single-stranded Ago2-processed interfering RNA triggers efficient gene silencing with fewer off-target effects.
    Shang R; Zhang F; Xu B; Xi H; Zhang X; Wang W; Wu L
    Nat Commun; 2015 Oct; 6():8430. PubMed ID: 26455506
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Autoantigen La promotes efficient RNAi, antiviral response, and transposon silencing by facilitating multiple-turnover RISC catalysis.
    Liu Y; Tan H; Tian H; Liang C; Chen S; Liu Q
    Mol Cell; 2011 Nov; 44(3):502-8. PubMed ID: 22055194
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Nanostructured RNAs for RNA interference.
    Nakashima Y; Abe N; Ito Y; Abe H
    Methods Mol Biol; 2015; 1218():17-36. PubMed ID: 25319643
    [TBL] [Abstract][Full Text] [Related]  

  • 37. DUSP11 - An RNA phosphatase that regulates host and viral non-coding RNAs in mammalian cells.
    Burke JM; Sullivan CS
    RNA Biol; 2017 Nov; 14(11):1457-1465. PubMed ID: 28296624
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Toward optimization of AgoshRNA molecules that use a non-canonical RNAi pathway: variations in the top and bottom base pairs.
    Herrera-Carrillo E; Harwig A; Berkhout B
    RNA Biol; 2015; 12(4):447-56. PubMed ID: 25747107
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Differences in silencing of mismatched targets by sliced versus diced siRNAs.
    Sun G; Wang J; Huang Y; Yuan CW; Zhang K; Hu S; Chen L; Lin RJ; Yen Y; Riggs AD
    Nucleic Acids Res; 2018 Jul; 46(13):6806-6822. PubMed ID: 29718312
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Re-Engineering RNA Molecules into Therapeutic Agents.
    Egli M; Manoharan M
    Acc Chem Res; 2019 Apr; 52(4):1036-1047. PubMed ID: 30912917
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 20.