BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

229 related articles for article (PubMed ID: 28933793)

  • 1. Contribution of gold nanoparticles to the catalytic DNA strand displacement in leakage reduction and signal amplification.
    Wang B; Zhou X; Yao D; Sun X; He M; Wang X; Yin X; Liang H
    Chem Commun (Camb); 2017 Oct; 53(79):10950-10953. PubMed ID: 28933793
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Gold nanoparticle enhanced fluorescence anisotropy for the assay of single nucleotide polymorphisms (SNPs) based on toehold-mediated strand-displacement reaction.
    Wang X; Zou M; Huang H; Ren Y; Li L; Yang X; Li N
    Biosens Bioelectron; 2013 Mar; 41():569-75. PubMed ID: 23062556
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A nonenzymatic DNA nanomachine for biomolecular detection by target recycling of hairpin DNA cascade amplification.
    Zheng J; Li N; Li C; Wang X; Liu Y; Mao G; Ji X; He Z
    Biosens Bioelectron; 2018 Jun; 107():40-46. PubMed ID: 29427885
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A DNA nanosensor for monitoring ligand-induced i-motif formation.
    Saha P; Panda D; Paul R; Dash J
    Org Biomol Chem; 2021 Mar; 19(9):1965-1969. PubMed ID: 33599664
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Nanoparticle-Based Discrimination of Single-Nucleotide Polymorphism in Long DNA Sequences.
    Sanromán-Iglesias M; Lawrie CH; Liz-Marzán LM; Grzelczak M
    Bioconjug Chem; 2017 Apr; 28(4):903-906. PubMed ID: 28225258
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Characterization and electrochemical response of DNA functionalized 2nm gold nanoparticles confined in a nanochannel array.
    Peinetti AS; Ceretti H; Mizrahi M; González GA; Ramírez SA; Requejo FG; Montserrat JM; Battaglini F
    Bioelectrochemistry; 2018 Jun; 121():169-175. PubMed ID: 29454941
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Stochastic DNA walker for electrochemical biosensing sensitized with gold nanocages@graphene nanoribbons.
    Feng Q; Zhao X; Guo Y; Liu M; Wang P
    Biosens Bioelectron; 2018 Jun; 108():97-102. PubMed ID: 29522905
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Linear light-scattering of gold nanostars for versatile biosensing of nucleic acids and proteins using exonuclease III as biocatalyst to signal amplification.
    Bi S; Jia X; Ye J; Dong Y
    Biosens Bioelectron; 2015 Sep; 71():427-433. PubMed ID: 25950939
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Highly sensitive MicroRNA 146a detection using a gold nanoparticle-based CTG repeat probing system and isothermal amplification.
    Le BH; Seo YJ
    Anal Chim Acta; 2018 Jan; 999():155-160. PubMed ID: 29254567
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The construction of a novel nucleic acids detection microplatform based on the NSET for one-step detecting TK1-DNA and microRNA-21.
    Zhang J; Zhao Q; Wu Y; Zhang B; Peng W; Piao J; Zhou Y; Gao W; Gong X; Chang J
    Biosens Bioelectron; 2017 Nov; 97():26-33. PubMed ID: 28549267
    [TBL] [Abstract][Full Text] [Related]  

  • 11. PolyA-tailed and fluorophore-labeled aptamer-gold nanoparticle conjugate for fluorescence turn-on bioassay using iodide-induced ligand displacement.
    Li W; Dong Y; Wang X; Li H; Xu D
    Biosens Bioelectron; 2015 Apr; 66():43-9. PubMed ID: 25460880
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Fluorescence near gold nanoparticles for DNA sensing.
    Cheng Y; Stakenborg T; Van Dorpe P; Lagae L; Wang M; Chen H; Borghs G
    Anal Chem; 2011 Feb; 83(4):1307-14. PubMed ID: 21261273
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Gold nanoparticle-catalyzed uranine reduction for signal amplification in fluorescent assays for melamine and aflatoxin B1.
    Wang X; Pauli J; Niessner R; Resch-Genger U; Knopp D
    Analyst; 2015 Nov; 140(21):7305-12. PubMed ID: 26359515
    [TBL] [Abstract][Full Text] [Related]  

  • 14. What Controls the "Off/On Switch" in the Toehold-Mediated Strand Displacement Reaction on DNA Conjugated Gold Nanoparticles?
    Yao D; Wang B; Xiao S; Song T; Huang F; Liang H
    Langmuir; 2015 Jun; 31(25):7055-61. PubMed ID: 26057346
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A dual signal amplification strategy for the highly sensitive fluorescence detection of nucleic acids.
    Zhang J; Song C; Zhou H; Jia J; Dai Y; Cui D; Wang L; Weng L
    Analyst; 2020 Feb; 145(4):1219-1226. PubMed ID: 31907495
    [TBL] [Abstract][Full Text] [Related]  

  • 16. High stability of gold nanoparticles towards DNA modification and efficient hybridization via a surfactant-free peptide route.
    Li XY; Feng FY; Wu ZT; Liu YZ; Zhou XD; Hu JM
    Chem Commun (Camb); 2017 Oct; 53(87):11909-11912. PubMed ID: 29044254
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Construction of a DNA-AuNP-based satellite network for exosome analysis.
    Gao ML; Yin BC; Ye BC
    Analyst; 2019 Oct; 144(20):5996-6003. PubMed ID: 31536072
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A lateral flow biosensor for detection of single nucleotide polymorphism by circular strand displacement reaction.
    Xiao Z; Lie P; Fang Z; Yu L; Chen J; Liu J; Ge C; Zhou X; Zeng L
    Chem Commun (Camb); 2012 Sep; 48(68):8547-9. PubMed ID: 22810628
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Toehold-mediated strand displacement reaction triggered isothermal DNA amplification for highly sensitive and selective fluorescent detection of single-base mutation.
    Zhu J; Ding Y; Liu X; Wang L; Jiang W
    Biosens Bioelectron; 2014 Sep; 59():276-81. PubMed ID: 24742973
    [TBL] [Abstract][Full Text] [Related]  

  • 20. DNA analysis based on toehold-mediated strand displacement on graphene oxide.
    Miyahata T; Kitamura Y; Futamura A; Matsuura H; Hatakeyama K; Koinuma M; Matsumoto Y; Ihara T
    Chem Commun (Camb); 2013 Oct; 49(86):10139-41. PubMed ID: 24048273
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.