These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
224 related articles for article (PubMed ID: 28933793)
1. Contribution of gold nanoparticles to the catalytic DNA strand displacement in leakage reduction and signal amplification. Wang B; Zhou X; Yao D; Sun X; He M; Wang X; Yin X; Liang H Chem Commun (Camb); 2017 Oct; 53(79):10950-10953. PubMed ID: 28933793 [TBL] [Abstract][Full Text] [Related]
2. Gold nanoparticle enhanced fluorescence anisotropy for the assay of single nucleotide polymorphisms (SNPs) based on toehold-mediated strand-displacement reaction. Wang X; Zou M; Huang H; Ren Y; Li L; Yang X; Li N Biosens Bioelectron; 2013 Mar; 41():569-75. PubMed ID: 23062556 [TBL] [Abstract][Full Text] [Related]
3. A nonenzymatic DNA nanomachine for biomolecular detection by target recycling of hairpin DNA cascade amplification. Zheng J; Li N; Li C; Wang X; Liu Y; Mao G; Ji X; He Z Biosens Bioelectron; 2018 Jun; 107():40-46. PubMed ID: 29427885 [TBL] [Abstract][Full Text] [Related]
4. A DNA nanosensor for monitoring ligand-induced i-motif formation. Saha P; Panda D; Paul R; Dash J Org Biomol Chem; 2021 Mar; 19(9):1965-1969. PubMed ID: 33599664 [TBL] [Abstract][Full Text] [Related]
5. Nanoparticle-Based Discrimination of Single-Nucleotide Polymorphism in Long DNA Sequences. Sanromán-Iglesias M; Lawrie CH; Liz-Marzán LM; Grzelczak M Bioconjug Chem; 2017 Apr; 28(4):903-906. PubMed ID: 28225258 [TBL] [Abstract][Full Text] [Related]
6. Characterization and electrochemical response of DNA functionalized 2nm gold nanoparticles confined in a nanochannel array. Peinetti AS; Ceretti H; Mizrahi M; González GA; Ramírez SA; Requejo FG; Montserrat JM; Battaglini F Bioelectrochemistry; 2018 Jun; 121():169-175. PubMed ID: 29454941 [TBL] [Abstract][Full Text] [Related]
7. Stochastic DNA walker for electrochemical biosensing sensitized with gold nanocages@graphene nanoribbons. Feng Q; Zhao X; Guo Y; Liu M; Wang P Biosens Bioelectron; 2018 Jun; 108():97-102. PubMed ID: 29522905 [TBL] [Abstract][Full Text] [Related]
8. Linear light-scattering of gold nanostars for versatile biosensing of nucleic acids and proteins using exonuclease III as biocatalyst to signal amplification. Bi S; Jia X; Ye J; Dong Y Biosens Bioelectron; 2015 Sep; 71():427-433. PubMed ID: 25950939 [TBL] [Abstract][Full Text] [Related]
9. Highly sensitive MicroRNA 146a detection using a gold nanoparticle-based CTG repeat probing system and isothermal amplification. Le BH; Seo YJ Anal Chim Acta; 2018 Jan; 999():155-160. PubMed ID: 29254567 [TBL] [Abstract][Full Text] [Related]
10. The construction of a novel nucleic acids detection microplatform based on the NSET for one-step detecting TK1-DNA and microRNA-21. Zhang J; Zhao Q; Wu Y; Zhang B; Peng W; Piao J; Zhou Y; Gao W; Gong X; Chang J Biosens Bioelectron; 2017 Nov; 97():26-33. PubMed ID: 28549267 [TBL] [Abstract][Full Text] [Related]
11. PolyA-tailed and fluorophore-labeled aptamer-gold nanoparticle conjugate for fluorescence turn-on bioassay using iodide-induced ligand displacement. Li W; Dong Y; Wang X; Li H; Xu D Biosens Bioelectron; 2015 Apr; 66():43-9. PubMed ID: 25460880 [TBL] [Abstract][Full Text] [Related]
12. Fluorescence near gold nanoparticles for DNA sensing. Cheng Y; Stakenborg T; Van Dorpe P; Lagae L; Wang M; Chen H; Borghs G Anal Chem; 2011 Feb; 83(4):1307-14. PubMed ID: 21261273 [TBL] [Abstract][Full Text] [Related]
13. Gold nanoparticle-catalyzed uranine reduction for signal amplification in fluorescent assays for melamine and aflatoxin B1. Wang X; Pauli J; Niessner R; Resch-Genger U; Knopp D Analyst; 2015 Nov; 140(21):7305-12. PubMed ID: 26359515 [TBL] [Abstract][Full Text] [Related]
14. What Controls the "Off/On Switch" in the Toehold-Mediated Strand Displacement Reaction on DNA Conjugated Gold Nanoparticles? Yao D; Wang B; Xiao S; Song T; Huang F; Liang H Langmuir; 2015 Jun; 31(25):7055-61. PubMed ID: 26057346 [TBL] [Abstract][Full Text] [Related]
15. A dual signal amplification strategy for the highly sensitive fluorescence detection of nucleic acids. Zhang J; Song C; Zhou H; Jia J; Dai Y; Cui D; Wang L; Weng L Analyst; 2020 Feb; 145(4):1219-1226. PubMed ID: 31907495 [TBL] [Abstract][Full Text] [Related]
16. High stability of gold nanoparticles towards DNA modification and efficient hybridization via a surfactant-free peptide route. Li XY; Feng FY; Wu ZT; Liu YZ; Zhou XD; Hu JM Chem Commun (Camb); 2017 Oct; 53(87):11909-11912. PubMed ID: 29044254 [TBL] [Abstract][Full Text] [Related]
17. Construction of a DNA-AuNP-based satellite network for exosome analysis. Gao ML; Yin BC; Ye BC Analyst; 2019 Oct; 144(20):5996-6003. PubMed ID: 31536072 [TBL] [Abstract][Full Text] [Related]
18. A lateral flow biosensor for detection of single nucleotide polymorphism by circular strand displacement reaction. Xiao Z; Lie P; Fang Z; Yu L; Chen J; Liu J; Ge C; Zhou X; Zeng L Chem Commun (Camb); 2012 Sep; 48(68):8547-9. PubMed ID: 22810628 [TBL] [Abstract][Full Text] [Related]
19. Toehold-mediated strand displacement reaction triggered isothermal DNA amplification for highly sensitive and selective fluorescent detection of single-base mutation. Zhu J; Ding Y; Liu X; Wang L; Jiang W Biosens Bioelectron; 2014 Sep; 59():276-81. PubMed ID: 24742973 [TBL] [Abstract][Full Text] [Related]
20. DNA analysis based on toehold-mediated strand displacement on graphene oxide. Miyahata T; Kitamura Y; Futamura A; Matsuura H; Hatakeyama K; Koinuma M; Matsumoto Y; Ihara T Chem Commun (Camb); 2013 Oct; 49(86):10139-41. PubMed ID: 24048273 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]