These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

197 related articles for article (PubMed ID: 28933854)

  • 1. Epigenetic DNA Modification N
    Wang W; Xu L; Hu L; Chong J; He C; Wang D
    J Am Chem Soc; 2017 Oct; 139(41):14436-14442. PubMed ID: 28933854
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A comprehensive mechanism for 5-carboxylcytosine-induced transcriptional pausing revealed by Markov state models.
    Konovalov KA; Wang W; Wang G; Goonetilleke EC; Gao X; Wang D; Huang X
    J Biol Chem; 2021; 296():100735. PubMed ID: 33991521
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Structural basis of transcriptional stalling and bypass of abasic DNA lesion by RNA polymerase II.
    Wang W; Walmacq C; Chong J; Kashlev M; Wang D
    Proc Natl Acad Sci U S A; 2018 Mar; 115(11):E2538-E2545. PubMed ID: 29487211
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Strand-specific (asymmetric) contribution of phosphodiester linkages on RNA polymerase II transcriptional efficiency and fidelity.
    Xu L; Zhang L; Chong J; Xu J; Huang X; Wang D
    Proc Natl Acad Sci U S A; 2014 Aug; 111(32):E3269-76. PubMed ID: 25074911
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Molecular basis of transcriptional pausing, stalling, and transcription-coupled repair initiation.
    Oh J; Xu J; Chong J; Wang D
    Biochim Biophys Acta Gene Regul Mech; 2021 Jan; 1864(1):194659. PubMed ID: 33271312
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mechanism of DNA alkylation-induced transcriptional stalling, lesion bypass, and mutagenesis.
    Xu L; Wang W; Wu J; Shin JH; Wang P; Unarta IC; Chong J; Wang Y; Wang D
    Proc Natl Acad Sci U S A; 2017 Aug; 114(34):E7082-E7091. PubMed ID: 28784758
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Structural and biochemical analysis of DNA lesion-induced RNA polymerase II arrest.
    Oh J; Xu J; Chong J; Wang D
    Methods; 2019 Apr; 159-160():29-34. PubMed ID: 30797902
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Structural basis for the initiation of eukaryotic transcription-coupled DNA repair.
    Xu J; Lahiri I; Wang W; Wier A; Cianfrocco MA; Chong J; Hare AA; Dervan PB; DiMaio F; Leschziner AE; Wang D
    Nature; 2017 Nov; 551(7682):653-657. PubMed ID: 29168508
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Dissecting chemical interactions governing RNA polymerase II transcriptional fidelity.
    Kellinger MW; Ulrich S; Chong J; Kool ET; Wang D
    J Am Chem Soc; 2012 May; 134(19):8231-40. PubMed ID: 22509745
    [TBL] [Abstract][Full Text] [Related]  

  • 10. RNA polymerase II stalls on oxidative DNA damage via a torsion-latch mechanism involving lone pair-π and CH-π interactions.
    Oh J; Fleming AM; Xu J; Chong J; Burrows CJ; Wang D
    Proc Natl Acad Sci U S A; 2020 Apr; 117(17):9338-9348. PubMed ID: 32284409
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Elongation rate of RNA polymerase II affects pausing patterns across 3' UTRs.
    Khitun A; Brion C; Moqtaderi Z; Geisberg JV; Churchman LS; Struhl K
    J Biol Chem; 2023 Nov; 299(11):105289. PubMed ID: 37748648
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Molecular basis for 5-carboxycytosine recognition by RNA polymerase II elongation complex.
    Wang L; Zhou Y; Xu L; Xiao R; Lu X; Chen L; Chong J; Li H; He C; Fu XD; Wang D
    Nature; 2015 Jul; 523(7562):621-5. PubMed ID: 26123024
    [TBL] [Abstract][Full Text] [Related]  

  • 13. RNA polymerase II transcriptional fidelity control and its functional interplay with DNA modifications.
    Xu L; Wang W; Chong J; Shin JH; Xu J; Wang D
    Crit Rev Biochem Mol Biol; 2015; 50(6):503-19. PubMed ID: 26392149
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Impact of template backbone heterogeneity on RNA polymerase II transcription.
    Xu L; Wang W; Zhang L; Chong J; Huang X; Wang D
    Nucleic Acids Res; 2015 Feb; 43(4):2232-41. PubMed ID: 25662224
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Intrinsic translocation barrier as an initial step in pausing by RNA polymerase II.
    Imashimizu M; Kireeva ML; Lubkowska L; Gotte D; Parks AR; Strathern JN; Kashlev M
    J Mol Biol; 2013 Feb; 425(4):697-712. PubMed ID: 23238253
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Ssl2/TFIIH function in transcription start site scanning by RNA polymerase II in
    Zhao T; Vvedenskaya IO; Lai WK; Basu S; Pugh BF; Nickels BE; Kaplan CD
    Elife; 2021 Oct; 10():. PubMed ID: 34652274
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Structure of transcribing mammalian RNA polymerase II.
    Bernecky C; Herzog F; Baumeister W; Plitzko JM; Cramer P
    Nature; 2016 Jan; 529(7587):551-4. PubMed ID: 26789250
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Opposite roles of transcription elongation factors Spt4/5 and Elf1 in RNA polymerase II transcription through B-form versus non-B DNA structures.
    Xu J; Chong J; Wang D
    Nucleic Acids Res; 2021 May; 49(9):4944-4953. PubMed ID: 33877330
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effects of endogenous DNA base lesions on transcription elongation by mammalian RNA polymerase II. Implications for transcription-coupled DNA repair and transcriptional mutagenesis.
    Kuraoka I; Endou M; Yamaguchi Y; Wada T; Handa H; Tanaka K
    J Biol Chem; 2003 Feb; 278(9):7294-9. PubMed ID: 12466278
    [TBL] [Abstract][Full Text] [Related]  

  • 20. RNA Pol II Dynamics Modulate Co-transcriptional Chromatin Modification, CTD Phosphorylation, and Transcriptional Direction.
    Fong N; Saldi T; Sheridan RM; Cortazar MA; Bentley DL
    Mol Cell; 2017 May; 66(4):546-557.e3. PubMed ID: 28506463
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.