These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

128 related articles for article (PubMed ID: 28934626)

  • 1. Stereoselective sialylation with O-trifluoroacetylated thiosialosides: hydrogen bonding involved?
    Podvalnyy NM; Malysheva NN; Panova MV; Zinin AI; Chizhov AO; Orlova AV; Kononov LO
    Carbohydr Res; 2017 Nov; 451():12-28. PubMed ID: 28934626
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Comparative Study on the Effects of Picoloyl Groups in Sialylations Based on Their Substitution Pattern.
    Jones B; Behm A; Shadrick M; Geringer SA; Escopy S; Lohman M; De Meo C
    J Org Chem; 2019 Dec; 84(23):15052-15062. PubMed ID: 31718181
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The use of O-trifluoroacetyl protection and profound influence of the nature of glycosyl acceptor in benzyl-free arabinofuranosylation.
    Abronina PI; Fedina KG; Podvalnyy NM; Zinin AI; Chizhov AO; Kondakov NN; Torgov VI; Kononov LO
    Carbohydr Res; 2014 Sep; 396():25-36. PubMed ID: 25079596
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The Thioglycoside and Glycosyl Phosphite of 5-Azido Sialic Acid: Excellent Donors for the α-Glycosylation of Primary Hydroxy Groups.
    Yu CS; Niikura K; Lin CC; Wong CH
    Angew Chem Int Ed Engl; 2001 Aug; 40(15):2900-2903. PubMed ID: 29711986
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The use of the novel glycosyl acceptor and supramer analysis in the synthesis of sialyl-α(2-3)-galactose building block.
    Nagornaya MO; Orlova AV; Stepanova EV; Zinin AI; Laptinskaya TV; Kononov LO
    Carbohydr Res; 2018 Dec; 470():27-35. PubMed ID: 30343245
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Comparative studies on the O-sialylation with four different α/β-oriented (N-acetyl)-5-N,4-O-carbonyl-protected p-toluenethiosialosides as donors.
    Zhang XT; Gu ZY; Xing GW
    Carbohydr Res; 2014 Mar; 388():1-7. PubMed ID: 24594527
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Acid-Base Catalysis in Glycosidations: A Nature Derived Alternative to the Generally Employed Methodology.
    Peng P; Schmidt RR
    Acc Chem Res; 2017 May; 50(5):1171-1183. PubMed ID: 28440624
    [TBL] [Abstract][Full Text] [Related]  

  • 8. 1-Picolinyl-5-azido Thiosialosides: Versatile Donors for the Stereoselective Construction of Sialyl Linkages.
    Chen J; Hansen T; Zhang QJ; Liu DY; Sun Y; Yan H; Codée JDC; Schmidt RR; Sun JS
    Angew Chem Int Ed Engl; 2019 Nov; 58(47):17000-17008. PubMed ID: 31532864
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Is an acyl group at O-3 in glucosyl donors able to control α-stereoselectivity of glycosylation? The role of conformational mobility and the protecting group at O-6.
    Komarova BS; Orekhova MV; Tsvetkov YE; Nifantiev NE
    Carbohydr Res; 2014 Jan; 384():70-86. PubMed ID: 24368161
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Syntheses of α(2,8) Sialosides Containing NeuAc and NeuGc by Using Double Carbonyl-Protected N-Acyl Sialyl Donors.
    Takeuchi Y; Tohda K; Tanaka H
    Chemistry; 2024 Jun; 30(31):e202400883. PubMed ID: 38556469
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The α-Glycosidation of Partially Unprotected N-Acetyl and N-Glycolyl Sialyl Donors in the Absence of a Nitrile Solvent Effect.
    Aoyagi T; Ohira S; Fuse S; Uzawa J; Yamaguchi Y; Tanaka H
    Chemistry; 2016 May; 22(20):6968-73. PubMed ID: 27060996
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Sialylation reactions with 5-N,7-O-carbonyl-protected sialyl donors: unusual stereoselectivity with nitrile solvent assistance.
    Tanaka H; Ando H; Ishihara H; Koketsu M
    Carbohydr Res; 2008 Jul; 343(10-11):1585-93. PubMed ID: 18502408
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Assistance of the C-7,8-Picoloyl Moiety for Directing the Glycosyl Acceptors into the α-Orientation for the Glycosylation of Sialyl Donors.
    Wu YF; Tsai YF
    Org Lett; 2017 Aug; 19(16):4171-4174. PubMed ID: 28753308
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Comparison of glycosyl donors: a supramer approach.
    Orlova AV; Malysheva NN; Panova MV; Podvalnyy NM; Medvedev MG; Kononov LO
    Beilstein J Org Chem; 2024; 20():181-192. PubMed ID: 38318458
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Stereoselective synthesis of oligo-alpha-(2,8)-sialic acids.
    Tanaka H; Nishiura Y; Takahashi T
    J Am Chem Soc; 2006 Jun; 128(22):7124-5. PubMed ID: 16734441
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Can the stereochemical outcome of glycosylation reactions be controlled by the conformational preferences of the glycosyl donor?
    Nukada T; Bérces A; Whitfield DM
    Carbohydr Res; 2002 Apr; 337(8):765-74. PubMed ID: 11950473
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Synthesis of sialyl halides with various acyl protective groups.
    Mamirgova ZZ; Zinin AI; Chizhov AO; Kononov LO
    Carbohydr Res; 2024 Feb; 536():109033. PubMed ID: 38295530
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effect of electron-withdrawing protecting groups at remote positions of donors on glycosylation stereochemistry.
    Kim KS; Suk DH
    Top Curr Chem; 2011; 301():109-40. PubMed ID: 21229347
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Synthesis of a trisaccharide repeating unit of the O-antigen from Burkholderia cenocepacia and its dimer.
    Bi N; Xiong C; Jin G; Guo Z; Gu G
    Carbohydr Res; 2017 Nov; 451():1-11. PubMed ID: 28917967
    [TBL] [Abstract][Full Text] [Related]  

  • 20. How O-substitution of sialyl donors affects their stereoselectivity.
    Premathilake HD; Gobble CP; Pornsuriyasak P; Hardimon T; Demchenko AV; De Meo C
    Org Lett; 2012 Feb; 14(4):1126-9. PubMed ID: 22300507
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.