These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

196 related articles for article (PubMed ID: 28934655)

  • 1. Nano-sized emission from commercially available paints used for indoor surfaces during drying.
    Jørgensen RB; Hveding IG; Solheim K
    Chemosphere; 2017 Dec; 189():153-160. PubMed ID: 28934655
    [TBL] [Abstract][Full Text] [Related]  

  • 2. An experimental study to investigate the feasibility to classify paints according to neurotoxicological risks: occupational air requirement (OAR) and indoor use of alkyd paints.
    Brouwer DH; de Pater NA; Zomer C; Lurvink MW; van Hemmen JJ
    Ann Occup Hyg; 2005 Jul; 49(5):443-51. PubMed ID: 15790614
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Release of TiO2 from paints containing pigment-TiO2 or nano-TiO2 by weathering.
    Al-Kattan A; Wichser A; Vonbank R; Brunner S; Ulrich A; Zuin S; Nowack B
    Environ Sci Process Impacts; 2013 Dec; 15(12):2186-93. PubMed ID: 24056809
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Comparison of dust release from epoxy and paint nanocomposites and conventional products during sanding and sawing.
    Gomez V; Levin M; Saber AT; Irusta S; Dal Maso M; Hanoi R; Santamaria J; Jensen KA; Wallin H; Koponen IK
    Ann Occup Hyg; 2014 Oct; 58(8):983-94. PubMed ID: 25030708
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Characterization of emissions of volatile organic compounds from interior alkyd paint.
    Fortmann R; Roache N; Chang JC; Guo Z
    J Air Waste Manag Assoc; 1998 Oct; 48(10):931-40. PubMed ID: 9798433
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Evaluation of low-VOC latex paints.
    Chang JC; Fortmann R; Roache N; Lao HC
    Indoor Air; 1999 Dec; 9(4):253-8. PubMed ID: 10649858
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effect of resin content and substrate on the emission of BTEX and carbonyls from low-VOC water-based wall paint.
    Zhao P; Cheng YH; Lin CC; Cheng YL
    Environ Sci Pollut Res Int; 2016 Feb; 23(4):3799-808. PubMed ID: 26498819
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Indoor air exposure to volatile compounds emitted by paints: experiment and model.
    van Veen MP; Fortezza F; Bloemen HJ; Kliest JJ
    J Expo Anal Environ Epidemiol; 1999; 9(6):569-74. PubMed ID: 10638842
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [Chemical and physical reactions during the drying process of paints and their impact on indoor air quality].
    Hantschke B
    Schriftenr Ver Wasser Boden Lufthyg; 1982; 53():269-79, 281. PubMed ID: 7184165
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Selective detection and characterization of nanoparticles from motor vehicles.
    Johnston MV; Klems JP; Zordan CA; Pennington MR; Smith JN;
    Res Rep Health Eff Inst; 2013 Feb; (173):3-45. PubMed ID: 23614271
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Characterization of paint dust aerosol generated from mechanical abrasion of TiO
    Nored AW; Chalbot MG; Kavouras IG
    J Occup Environ Hyg; 2018 Sep; 15(9):629-640. PubMed ID: 29856686
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A study on dynamic volatile organic compound emission characterization of water-based paints.
    Chang YM; Hu WH; Fang WB; Chen SS; Chang CT; Ching HW
    J Air Waste Manag Assoc; 2011 Jan; 61(1):35-45. PubMed ID: 21305886
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Indoor Air Quality in Photocopy Centers, Nanoparticle Exposures at Photocopy Workstations, and the Need for Exposure Controls.
    Martin J; Demokritou P; Woskie S; Bello D
    Ann Work Expo Health; 2017 Jan; 61(1):110-122. PubMed ID: 28395317
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Potential Release of Manufactured Nano Objects During Sanding of Nano-Coated Wood Surfaces.
    Fransman W; Bekker C; Tromp P; Duis WB
    Ann Occup Hyg; 2016 Aug; 60(7):875-84. PubMed ID: 27234377
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Occupational Exposure and Environmental Release: The Case Study of Pouring TiO
    Fonseca AS; Viitanen AK; Kanerva T; Säämänen A; Aguerre-Chariol O; Fable S; Dermigny A; Karoski N; Fraboulet I; Koponen IK; Delpivo C; Vilchez Villalba A; Vázquez-Campos S; Østerskov Jensen AC; Hjortkjær Nielsen S; Sahlgren N; Clausen PA; Xuan Nguyen Larsen B; Kofoed-Sørensen V; Alstrup Jensen K; Koivisto J
    Int J Environ Res Public Health; 2021 Jan; 18(2):. PubMed ID: 33430311
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Passive Control of Indoor Formaldehyde by Mixed-Metal Oxide Latex Paints.
    Adebayo BO; Trautman J; Al-Naddaf Q; Rownaghi AA; Rezaei F
    Environ Sci Technol; 2021 Jul; 55(13):9255-9265. PubMed ID: 34101438
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Spatial and temporal variability of incidental nanoparticles in indoor workplaces: impact on the characterization of point source exposures.
    Niu J; Rasmussen PE; Magee R; Nilsson G
    Environ Sci Process Impacts; 2015 Jan; 17(1):98-109. PubMed ID: 25410705
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Volatile organic compound emissions from latex paint--Part 1. Chamber experiments and source model development.
    Sparks LE; Guo Z; Chang JC; Tichenor BA
    Indoor Air; 1999 Mar; 9(1):10-7. PubMed ID: 10195271
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Photocatalytic surface reactions on indoor wall paint.
    Salthammer T; Fuhrmann F
    Environ Sci Technol; 2007 Sep; 41(18):6573-8. PubMed ID: 17948810
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The effects of paints and moisture content on the indoor air emissions from pinewood (Pinus sylvestris) boards.
    Alapieti T; Castagnoli E; Salo L; Mikkola R; Pasanen P; Salonen H
    Indoor Air; 2021 Sep; 31(5):1563-1576. PubMed ID: 33939214
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.