These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
146 related articles for article (PubMed ID: 28934656)
1. Mercury accumulation plant Cyrtomium macrophyllum and its potential for phytoremediation of mercury polluted sites. Xun Y; Feng L; Li Y; Dong H Chemosphere; 2017 Dec; 189():161-170. PubMed ID: 28934656 [TBL] [Abstract][Full Text] [Related]
2. Screening of native plant species for phytoremediation potential at a Hg-contaminated mining site. Marrugo-Negrete J; Marrugo-Madrid S; Pinedo-Hernández J; Durango-Hernández J; Díez S Sci Total Environ; 2016 Jan; 542(Pt A):809-16. PubMed ID: 26556744 [TBL] [Abstract][Full Text] [Related]
3. Mercury uptake and phytotoxicity in terrestrial plants grown naturally in the Gumuskoy (Kutahya) mining area, Turkey. Sasmaz M; Akgül B; Yıldırım D; Sasmaz A Int J Phytoremediation; 2016; 18(1):69-76. PubMed ID: 26114359 [TBL] [Abstract][Full Text] [Related]
4. Phytoremediation of mercury-contaminated soils by Jatropha curcas. Marrugo-Negrete J; Durango-Hernández J; Pinedo-Hernández J; Olivero-Verbel J; Díez S Chemosphere; 2015 May; 127():58-63. PubMed ID: 25655698 [TBL] [Abstract][Full Text] [Related]
5. Phytoremediation potential of Miscanthus sinensis for mercury-polluted sites and its impacts on soil microbial community. Zhao A; Gao L; Chen B; Feng L Environ Sci Pollut Res Int; 2019 Dec; 26(34):34818-34829. PubMed ID: 31654309 [TBL] [Abstract][Full Text] [Related]
6. Mercury uptake and effects on growth in Jatropha curcas. Marrugo-Negrete J; Durango-Hernández J; Pinedo-Hernández J; Enamorado-Montes G; Díez S J Environ Sci (China); 2016 Oct; 48():120-125. PubMed ID: 27745657 [TBL] [Abstract][Full Text] [Related]
7. Raj D; Kumar A; Maiti SK Int J Phytoremediation; 2020; 22(7):733-744. PubMed ID: 31928218 [TBL] [Abstract][Full Text] [Related]
8. Transfer and bioaccumulation of mercury from soil in cowpea in gold mining sites. Marrugo-Negrete J; Durango-Hernández J; Díaz-Fernández L; Urango-Cárdenas I; Araméndiz-Tatis H; Vergara-Flórez V; Bravo AG; Díez S Chemosphere; 2020 Jul; 250():126142. PubMed ID: 32105852 [TBL] [Abstract][Full Text] [Related]
9. A methodological approach to evaluate arsenic speciation and bioaccumulation in different plant species from two highly polluted mining areas. Larios R; Fernández-Martínez R; Lehecho I; Rucandio I Sci Total Environ; 2012 Jan; 414():600-7. PubMed ID: 22154482 [TBL] [Abstract][Full Text] [Related]
11. Mercury uptake and translocation in Impatiens walleriana plants grown in the contaminated soil from Oak Ridge. Pant P; Allen M; Tansel B Int J Phytoremediation; 2011 Feb; 13(2):168-76. PubMed ID: 21598784 [TBL] [Abstract][Full Text] [Related]
12. Phytoextraction of HG by parsley (Petroselinum crispum) and its growth responses. Bibi A; Farooq U; Naz S; Khan A; Khan S; Sarwar R; Mahmood Q; Alam A; Mirza N Int J Phytoremediation; 2016; 18(4):354-7. PubMed ID: 26514060 [TBL] [Abstract][Full Text] [Related]
13. Mercury uptake by Silene vulgaris grown on contaminated spiked soils. Pérez-Sanz A; Millán R; Sierra MJ; Alarcón R; García P; Gil-Díaz M; Vazquez S; Lobo MC J Environ Manage; 2012 Mar; 95 Suppl():S233-7. PubMed ID: 20708330 [TBL] [Abstract][Full Text] [Related]
14. Phytoremediation of heavy-metal-polluted soils: screening for new accumulator plants in Angouran mine (Iran) and evaluation of removal ability. Chehregani A; Noori M; Yazdi HL Ecotoxicol Environ Saf; 2009 Jul; 72(5):1349-53. PubMed ID: 19386362 [TBL] [Abstract][Full Text] [Related]
15. Screening of chelating ligands to enhance mercury accumulation from historically mercury-contaminated soils for phytoextraction. Wang J; Xia J; Feng X J Environ Manage; 2017 Jan; 186(Pt 2):233-239. PubMed ID: 27217079 [TBL] [Abstract][Full Text] [Related]
16. Arsenic accumulation by two brake ferns growing on an arsenic mine and their potential in phytoremediation. Wei CY; Chen TB Chemosphere; 2006 May; 63(6):1048-53. PubMed ID: 16297966 [TBL] [Abstract][Full Text] [Related]
17. Total mercury and methylmercury accumulation in wild plants grown at wastelands composed of mine tailings: Insights into potential candidates for phytoremediation. Qian X; Wu Y; Zhou H; Xu X; Xu Z; Shang L; Qiu G Environ Pollut; 2018 Aug; 239():757-767. PubMed ID: 29729617 [TBL] [Abstract][Full Text] [Related]
18. [Evaluation of the mercury accumulating capacity of pepper (Capsicum annuum)]. Pérez-Vargas HM; Vidal-Durango JV; Marrugo-Negrete JL Rev Salud Publica (Bogota); 2014; 16(6):897-909. PubMed ID: 26120859 [TBL] [Abstract][Full Text] [Related]
19. Improvement of cadmium phytoremediation by Centella asiatica L. after soil inoculation with cadmium-resistant Enterobacter sp. FM-1. Li Y; Liu K; Wang Y; Zhou Z; Chen C; Ye P; Yu F Chemosphere; 2018 Jul; 202():280-288. PubMed ID: 29573613 [TBL] [Abstract][Full Text] [Related]
20. The effect of EDTA and citric acid on biochemical processes and changes in phenolic compounds profile of okra (Abelmoschus esculentus L.) under mercury stress. Mohammadi S; Pourakbar L; Siavash Moghaddam S; Popović-Djordjević J Ecotoxicol Environ Saf; 2021 Jan; 208():111607. PubMed ID: 33396127 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]